A variational principle for domino tilings
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 297-346

Voir la notice de l'article provenant de la source American Mathematical Society

We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entropy integral. We associate an entropy to every sort of local behavior domino tilings can exhibit, and prove that almost all tilings lie within $\varepsilon$ (for an appropriate metric) of the unique entropy-maximizing solution. This gives a solution to the dimer problem with fully general boundary conditions, thereby resolving an issue first raised by Kasteleyn. Our methods also apply to dimer models on other grids and their associated tiling models, such as tilings of the plane by three orientations of unit lozenges.
DOI : 10.1090/S0894-0347-00-00355-6

Cohn, Henry 1, 2 ; Kenyon, Richard 3 ; Propp, James 4

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
2 Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399
3 CNRS UMR 8628, Laboratoire de Topologie, Bâtiment 425, Université Paris-11, 91405 Orsay, France
4 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
@article{10_1090_S0894_0347_00_00355_6,
     author = {Cohn, Henry and Kenyon, Richard and Propp, James},
     title = {A variational principle for domino tilings},
     journal = {Journal of the American Mathematical Society},
     pages = {297--346},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00355-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/}
}
TY  - JOUR
AU  - Cohn, Henry
AU  - Kenyon, Richard
AU  - Propp, James
TI  - A variational principle for domino tilings
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 297
EP  - 346
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/
DO  - 10.1090/S0894-0347-00-00355-6
ID  - 10_1090_S0894_0347_00_00355_6
ER  - 
%0 Journal Article
%A Cohn, Henry
%A Kenyon, Richard
%A Propp, James
%T A variational principle for domino tilings
%J Journal of the American Mathematical Society
%D 2001
%P 297-346
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/
%R 10.1090/S0894-0347-00-00355-6
%F 10_1090_S0894_0347_00_00355_6
Cohn, Henry; Kenyon, Richard; Propp, James. A variational principle for domino tilings. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 297-346. doi: 10.1090/S0894-0347-00-00355-6

[1] Blã¶Te, H. W. J., Hilhorst, H. J. Roughening transitions and the zero-temperature triangular Ising antiferromagnet J. Phys. A 1982

[2] Burton, Robert, Pemantle, Robin Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances Ann. Probab. 1993 1329 1371

[3] Cohn, Henry, Elkies, Noam, Propp, James Local statistics for random domino tilings of the Aztec diamond Duke Math. J. 1996 117 166

[4] Cohn, Henry, Larsen, Michael, Propp, James The shape of a typical boxed plane partition New York J. Math. 1998 137 165

[5] Destainville, N., Mosseri, R., Bailly, F. Configurational entropy of codimension-one tilings and directed membranes J. Statist. Phys. 1997 697 754

[6] Nakano, Hidegor㴠Über Abelsche Ringe von Projektionsoperatoren Proc. Phys.-Math. Soc. Japan (3) 1939 357 375

[7] Federer, Herbert Geometric measure theory 1969

[8] Fournier, Jean-Claude Pavage des figures planes sans trous par des dominos: fondement graphique de l’algorithme de Thurston et parallélisation C. R. Acad. Sci. Paris Sér. I Math. 1995 107 112

[9] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1977

[10] Jaekel, M. T., Maillard, J.-M. Inversion relations and disorder solutions on Potts models J. Phys. A 1984 2079 2094

[11] Kasteleyn, P. W. Dimer statistics and phase transitions J. Mathematical Phys. 1963 287 293

[12] Kenyon, Claire, Rã©Mila, Eric Perfect matchings in the triangular lattice Discrete Math. 1996 191 210

[13] Kenyon, Richard Local statistics of lattice dimers Ann. Inst. H. Poincaré Probab. Statist. 1997 591 618

[14] Levitov, L. S. Equivalence of the dimer resonating-valence-bond problem to the quantum roughening problem Phys. Rev. Lett. 1990 92 94

[15] Maillard, J.-M., Rammal, R. 𝒮₄-symmetry on the checkerboard Potts model J. Phys. A 1985 833 846

[16] Propp, James Boundary-dependent local behavior for 2-D dimer models Internat. J. Modern Phys. B 1997 183 187

[17] Propp, James Gary, Wilson, David Bruce Exact sampling with coupled Markov chains and applications to statistical mechanics Random Structures Algorithms 1996 223 252

[18] Rudin, Walter Real and complex analysis 1987

[19] Saldanha, N. C., Tomei, C., Casarin, M. A., Jr., Romualdo, D. Spaces of domino tilings Discrete Comput. Geom. 1995 207 233

[20] Temperley, H. N. V., Fisher, Michael E. Dimer problem in statistical mechanics—an exact result Philos. Mag. (8) 1961 1061 1063

[21] Thurston, William P. Conway’s tiling groups Amer. Math. Monthly 1990 757 773

Cité par Sources :