Voir la notice de l'article provenant de la source American Mathematical Society
Cohn, Henry 1, 2 ; Kenyon, Richard 3 ; Propp, James 4
@article{10_1090_S0894_0347_00_00355_6,
     author = {Cohn, Henry and Kenyon, Richard and Propp, James},
     title = {A variational principle for domino tilings},
     journal = {Journal of the American Mathematical Society},
     pages = {297--346},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00355-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/}
}
                      
                      
                    TY - JOUR AU - Cohn, Henry AU - Kenyon, Richard AU - Propp, James TI - A variational principle for domino tilings JO - Journal of the American Mathematical Society PY - 2001 SP - 297 EP - 346 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/ DO - 10.1090/S0894-0347-00-00355-6 ID - 10_1090_S0894_0347_00_00355_6 ER -
%0 Journal Article %A Cohn, Henry %A Kenyon, Richard %A Propp, James %T A variational principle for domino tilings %J Journal of the American Mathematical Society %D 2001 %P 297-346 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00355-6/ %R 10.1090/S0894-0347-00-00355-6 %F 10_1090_S0894_0347_00_00355_6
Cohn, Henry; Kenyon, Richard; Propp, James. A variational principle for domino tilings. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 297-346. doi: 10.1090/S0894-0347-00-00355-6
[1] , Roughening transitions and the zero-temperature triangular Ising antiferromagnet J. Phys. A 1982
[2] , Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances Ann. Probab. 1993 1329 1371
[3] , , Local statistics for random domino tilings of the Aztec diamond Duke Math. J. 1996 117 166
[4] , , The shape of a typical boxed plane partition New York J. Math. 1998 137 165
[5] , , Configurational entropy of codimension-one tilings and directed membranes J. Statist. Phys. 1997 697 754
[6] Ãber Abelsche Ringe von Projektionsoperatoren Proc. Phys.-Math. Soc. Japan (3) 1939 357 375
[7] Geometric measure theory 1969
[8] Pavage des figures planes sans trous par des dominos: fondement graphique de lâalgorithme de Thurston et parallélisation C. R. Acad. Sci. Paris Sér. I Math. 1995 107 112
[9] , Elliptic partial differential equations of second order 1977
[10] , Inversion relations and disorder solutions on Potts models J. Phys. A 1984 2079 2094
[11] Dimer statistics and phase transitions J. Mathematical Phys. 1963 287 293
[12] , Perfect matchings in the triangular lattice Discrete Math. 1996 191 210
[13] Local statistics of lattice dimers Ann. Inst. H. Poincaré Probab. Statist. 1997 591 618
[14] Equivalence of the dimer resonating-valence-bond problem to the quantum roughening problem Phys. Rev. Lett. 1990 92 94
[15] , ð®â-symmetry on the checkerboard Potts model J. Phys. A 1985 833 846
[16] Boundary-dependent local behavior for 2-D dimer models Internat. J. Modern Phys. B 1997 183 187
[17] , Exact sampling with coupled Markov chains and applications to statistical mechanics Random Structures Algorithms 1996 223 252
[18] Real and complex analysis 1987
[19] , , , Spaces of domino tilings Discrete Comput. Geom. 1995 207 233
[20] , Dimer problem in statistical mechanicsâan exact result Philos. Mag. (8) 1961 1061 1063
[21] Conwayâs tiling groups Amer. Math. Monthly 1990 757 773
Cité par Sources :
