Boundedness of automorphic 𝐿–functions in vertical strips
Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 79-107

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we prove the boundedness in vertical strips of finite width for all the $L$–functions that appear in constant terms of Eisenstein series, under a certain natural assumption on local normalized intertwining operators. This result has been quite important in establishing recent cases of Langlands functoriality by Cogdell, Kim, Piatetski-Shapiro, and Shahidi, using converse theorems.
DOI : 10.1090/S0894-0347-00-00351-9

Gelbart, Stephen 1 ; Shahidi, Freydoon 2

1 Nicki and J. Ira Harris Professorial Chair, Weizmann Institute of Science, Rehovot 76100, Israel
2 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
@article{10_1090_S0894_0347_00_00351_9,
     author = {Gelbart, Stephen and Shahidi, Freydoon},
     title = {Boundedness of automorphic {\dh}{\textquestiondown}\^a€“functions in vertical strips},
     journal = {Journal of the American Mathematical Society},
     pages = {79--107},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00351-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00351-9/}
}
TY  - JOUR
AU  - Gelbart, Stephen
AU  - Shahidi, Freydoon
TI  - Boundedness of automorphic 𝐿–functions in vertical strips
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 79
EP  - 107
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00351-9/
DO  - 10.1090/S0894-0347-00-00351-9
ID  - 10_1090_S0894_0347_00_00351_9
ER  - 
%0 Journal Article
%A Gelbart, Stephen
%A Shahidi, Freydoon
%T Boundedness of automorphic 𝐿–functions in vertical strips
%J Journal of the American Mathematical Society
%D 2001
%P 79-107
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00351-9/
%R 10.1090/S0894-0347-00-00351-9
%F 10_1090_S0894_0347_00_00351_9
Gelbart, Stephen; Shahidi, Freydoon. Boundedness of automorphic 𝐿–functions in vertical strips. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 79-107. doi: 10.1090/S0894-0347-00-00351-9

[1] Arthur, James Intertwining operators and residues. I. Weighted characters J. Funct. Anal. 1989 19 84

[2] Arthur, James G. A trace formula for reductive groups. I. Terms associated to classes in 𝐺(𝑄) Duke Math. J. 1978 911 952

[3] Arthur, James A trace formula for reductive groups. II. Applications of a truncation operator Compositio Math. 1980 87 121

[4] Borel, A. Automorphic 𝐿-functions 1979 27 61

[5] Bump, Daniel, Ginzburg, David, Hoffstein, Jeffrey The symmetric cube Invent. Math. 1996 413 449

[6] Casselman, William, Shahidi, Freydoon On irreducibility of standard modules for generic representations Ann. Sci. École Norm. Sup. (4) 1998 561 589

[7] Cogdell, J. W., Piatetski-Shapiro, I. I. Converse theorems for 𝐺𝐿_{𝑛} Inst. Hautes Études Sci. Publ. Math. 1994 157 214

[8] Cogdell, J. W., Piatetski-Shapiro, I. I. Unitarity and functoriality Geom. Funct. Anal. 1995 164 173

[9] Cogdell, J. W., Piatetski-Shapiro, I. I. Converse theorems for 𝐺𝐿_{𝑛}. II J. Reine Angew. Math. 1999 165 188

[10] Garrett, Paul B. Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235

[11] Gelbart, Stephen, Jacquet, Herv㩠A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3) Ann. Sci. École Norm. Sup. (4) 1978 471 542

[12] Gelbart, Stephen, Piatetski-Shapiro, Ilya, Rallis, Stephen Explicit constructions of automorphic 𝐿-functions 1987

[13] Ginzburg, David, Rallis, Stephen, Soudry, David Self-dual automorphic 𝐺𝐿_{𝑛} modules and construction of a backward lifting from 𝐺𝐿_{𝑛} to classical groups Internat. Math. Res. Notices 1997 687 701

[14] Goodman, Roe, Wallach, Nolan R. Whittaker vectors and conical vectors J. Functional Analysis 1980 199 279

[15] Harish-Chandra Automorphic forms on semisimple Lie groups 1968

[16] Ikeda, Tamotsu On the location of poles of the triple 𝐿-functions Compositio Math. 1992 187 237

[17] Jacquet, Herv㩠Fonctions de Whittaker associées aux groupes de Chevalley Bull. Soc. Math. France 1967 243 309

[18] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558

[19] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558

[20] Jacquet, H., Piatetskii-Shapiro, I. I., Shalika, J. A. Rankin-Selberg convolutions Amer. J. Math. 1983 367 464

[21] Kim, Henry H. Langlands-Shahidi method and poles of automorphic 𝐿-functions: application to exterior square 𝐿-functions Canad. J. Math. 1999 835 849

[22] Kutzko, Philip The Langlands conjecture for 𝐺𝑙₂ of a local field Ann. of Math. (2) 1980 381 412

[23] Langlands, Robert P. Euler products 1971

[24] Langlands, Robert P. On the functional equations satisfied by Eisenstein series 1976

[25] Langlands, R. P. Eisenstein series 1966 235 252

[26] Langlands, R. P. On the classification of irreducible representations of real algebraic groups 1989 101 170

[27] Levin, B. Ya. Lectures on entire functions 1996

[28] Må“Glin, C., Waldspurger, J.-L. Spectral decomposition and Eisenstein series 1995

[29] Må“Glin, C., Waldspurger, J.-L. Le spectre résiduel de 𝐺𝐿(𝑛) Ann. Sci. École Norm. Sup. (4) 1989 605 674

[30] Muiä‡, Goran Some results on square integrable representations Internat. Math. Res. Notices 1998 705 726

[31] Muiä‡, Goran, Shahidi, Freydoon Irreducibility of standard representations for Iwahori-spherical representations Math. Ann. 1998 151 165

[32] Mã¼Ller, Werner The trace class conjecture in the theory of automorphic forms Ann. of Math. (2) 1989 473 529

[33] Raghunathan, Ravi A comparison of zeros of 𝐿-functions Math. Res. Lett. 1999 155 167

[34] Raghunathan, Ravi A converse theorem for Dirichlet series with poles C. R. Acad. Sci. Paris Sér. I Math. 1998 231 235

[35] Rudnick, Zeã©V, Sarnak, Peter Zeros of principal 𝐿-functions and random matrix theory Duke Math. J. 1996 269 322

[36] Schiffmann, Gã©Rard Intégrales d’entrelacement et fonctions de Whittaker Bull. Soc. Math. France 1971 3 72

[37] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[38] Shahidi, Freydoon On the Ramanujan conjecture and finiteness of poles for certain 𝐿-functions Ann. of Math. (2) 1988 547 584

[39] Shahidi, Freydoon Local coefficients as Artin factors for real groups Duke Math. J. 1985 973 1007

[40] Shahidi, Freydoon On certain 𝐿-functions Amer. J. Math. 1981 297 355

[41] Shahidi, F. Automorphic 𝐿-functions: a survey 1990 415 437

[42] Shahidi, Freydoon Fourier transforms of intertwining operators and Plancherel measures for 𝐺𝐿(𝑛) Amer. J. Math. 1984 67 111

[43] Shahidi, Freydoon Third symmetric power 𝐿-functions for 𝐺𝐿(2) Compositio Math. 1989 245 273

[44] Shahidi, Freydoon Symmetric power 𝐿-functions for 𝐺𝐿(2) 1994 159 182

[45] Shahidi, Freydoon Whittaker models for real groups Duke Math. J. 1980 99 125

[46] Silberger, Allan J. Special representations of reductive 𝑝-adic groups are not integrable Ann. of Math. (2) 1980 571 587

[47] Soudry, David Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛}: local theory Mem. Amer. Math. Soc. 1993

[48] Soudry, David On the Archimedean theory of Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛} Ann. Sci. École Norm. Sup. (4) 1995 161 224

[49] ŽAmpera, Siniå¡A The residual spectrum of the group of type 𝐺₂ J. Math. Pures Appl. (9) 1997 805 835

[50] Zhang, Yuanli The holomorphy and nonvanishing of normalized local intertwining operators Pacific J. Math. 1997 385 398

Cité par Sources :