The spectra of nonnegative integer matrices via formal power series
Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 773-806

Voir la notice de l'article provenant de la source American Mathematical Society

We characterize the possible nonzero spectra of primitive integer matrices (the integer case of Boyle and Handelman’s Spectral Conjecture). Characterizations of nonzero spectra of nonnegative matrices over ${\mathbb Z}$ and ${\mathbb Q}$ follow from this result. For the proof of the main theorem we use polynomial matrices to reduce the problem of realizing a candidate spectrum $(\lambda _1,\lambda _2,\ldots ,\lambda _d)$ to factoring the polynomial $\prod _{i=1}^d (1-\lambda _it)$ as a product $(1-r(t))\prod _{i=1}^n (1-q_i(t))$ where the $q_i$’s are polynomials in $t{\mathbb Z}_+[t]$ satisfying some technical conditions and $r$ is a formal power series in $t{\mathbb Z}_+[[t]]$. To obtain the factorization, we present a hierarchy of estimates on coefficients of power series of the form $\prod _{i=1}^d (1-\lambda _it)/\prod _{i=1}^n (1-q_i(t))$ to ensure nonpositivity in nonzero degree terms.
DOI : 10.1090/S0894-0347-00-00342-8

Kim, Ki 1 ; Ormes, Nicholas 2, 3 ; Roush, Fred 4

1 Mathematics Research Group, Alabama State University, Montgomery, Alabama 36101-0271 and Korean Academy of Science and Technology
2 Department of Mathematics, C1200, University of Texas, Austin, Texas 78712
3 Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
4 Mathematics Research Group, Alabama State University, Montgomery, Alabama 36101-0271
@article{10_1090_S0894_0347_00_00342_8,
     author = {Kim, Ki and Ormes, Nicholas and Roush, Fred},
     title = {The spectra of nonnegative integer matrices via formal power series},
     journal = {Journal of the American Mathematical Society},
     pages = {773--806},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00342-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00342-8/}
}
TY  - JOUR
AU  - Kim, Ki
AU  - Ormes, Nicholas
AU  - Roush, Fred
TI  - The spectra of nonnegative integer matrices via formal power series
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 773
EP  - 806
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00342-8/
DO  - 10.1090/S0894-0347-00-00342-8
ID  - 10_1090_S0894_0347_00_00342_8
ER  - 
%0 Journal Article
%A Kim, Ki
%A Ormes, Nicholas
%A Roush, Fred
%T The spectra of nonnegative integer matrices via formal power series
%J Journal of the American Mathematical Society
%D 2000
%P 773-806
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00342-8/
%R 10.1090/S0894-0347-00-00342-8
%F 10_1090_S0894_0347_00_00342_8
Kim, Ki; Ormes, Nicholas; Roush, Fred. The spectra of nonnegative integer matrices via formal power series. Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 773-806. doi: 10.1090/S0894-0347-00-00342-8

[1] Block, Louis, Guckenheimer, John, Misiurewicz, Michaå‚, Young, Lai Sang Periodic points and topological entropy of one-dimensional maps 1980 18 34

[2] Boyle, Mike, Handelman, David The spectra of nonnegative matrices via symbolic dynamics Ann. of Math. (2) 1991 249 316

[3] Boyle, Mike, Handelman, David Algebraic shift equivalence and primitive matrices Trans. Amer. Math. Soc. 1993 121 149

[4] Borobia, Alberto On the nonnegative eigenvalue problem Linear Algebra Appl. 1995 131 140

[5] Boyle, Mike Symbolic dynamics and matrices 1993 1 38

[6] Berman, Abraham, Plemmons, Robert J. Nonnegative matrices in the mathematical sciences 1994

[7] Ciarlet, P. G. Some results in the theory of nonnegative matrices Linear Algebra Appl. 1968 139 152

[8] Fiedler, Miroslav Eigenvalues of nonnegative symmetric matrices Linear Algebra Appl. 1974 119 142

[9] Friedland, Shmuel On an inverse problem for nonnegative and eventually nonnegative matrices Israel J. Math. 1978 43 60

[10] Johnson, Charles R., Laffey, Thomas J., Loewy, Raphael The real and the symmetric nonnegative inverse eigenvalue problems are different Proc. Amer. Math. Soc. 1996 3647 3651

[11] Johnson, Charles R. Row stochastic matrices similar to doubly stochastic matrices Linear and Multilinear Algebra 1981 113 130

[12] Kellogg, R. Bruce Matrices similar to a positive or essentially positive matrix Linear Algebra Appl. 1971 191 204

[13] Kim, K. H., Roush, F. W., Wagoner, J. B. Inert actions on periodic points Electron. Res. Announc. Amer. Math. Soc. 1997 55 62

[14] Lind, D. A. The entropies of topological Markov shifts and a related class of algebraic integers Ergodic Theory Dynam. Systems 1984 283 300

[15] Loewy, Raphael, London, David A note on an inverse problem for nonnegative matrices Linear and Multilinear Algebra 1978/79 83 90

[16] Lind, Douglas, Marcus, Brian An introduction to symbolic dynamics and coding 1995

[17] Laffey, Thomas J., Meehan, Eleanor A refinement of an inequality of Johnson, Loewy and London on nonnegative matrices and some applications Electron. J. Linear Algebra 1998 119 128

[18] Minc, Henryk Nonnegative matrices 1988

[19] Marcus, Brian, Tuncel, Selim The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains Ergodic Theory Dynam. Systems 1991 129 180

[20] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[21] Perrin, Dominique On positive matrices Theoret. Comput. Sci. 1992 357 366

[22] Reams, Robert An inequality for nonnegative matrices and the inverse eigenvalue problem Linear and Multilinear Algebra 1996 367 375

[23] Salzmann, Frank L. A note on eigenvalues of nonnegative matrices Linear Algebra Appl. 1972 329 338

[24] Soules, George W. Constructing symmetric nonnegative matrices Linear and Multilinear Algebra 1983 241 251

[25] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[26] Wuwen, Guo Eigenvalues of nonnegative matrices Linear Algebra Appl. 1997 261 270

Cité par Sources :