The size of the singular set in mean curvature flow of mean-convex sets
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 665-695 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We prove that when a compact mean-convex subset of $\mathbf {R}^{n+1}$ (or of an $(n+1)$-dimensional riemannian manifold) moves by mean-curvature, the spacetime singular set has parabolic hausdorff dimension at most $n-1$. Examples show that this is optimal. We also show that, as $t\to \infty$, the surface converges to a compact stable minimal hypersurface whose singular set has dimension at most $n - 7$. If $n 7$, the convergence is everywhere smooth and hence after some time $T$, the moving surface has no singularities
DOI : 10.1090/S0894-0347-00-00338-6

White, Brian  1

1 Department of Mathematics, Stanford University, Stanford, California 94305
@article{10_1090_S0894_0347_00_00338_6,
     author = {White, Brian},
     title = {The size of the singular set in mean curvature flow of mean-convex sets},
     journal = {Journal of the American Mathematical Society},
     pages = {665--695},
     year = {2000},
     volume = {13},
     number = {3},
     doi = {10.1090/S0894-0347-00-00338-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00338-6/}
}
TY  - JOUR
AU  - White, Brian
TI  - The size of the singular set in mean curvature flow of mean-convex sets
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 665
EP  - 695
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00338-6/
DO  - 10.1090/S0894-0347-00-00338-6
ID  - 10_1090_S0894_0347_00_00338_6
ER  - 
%0 Journal Article
%A White, Brian
%T The size of the singular set in mean curvature flow of mean-convex sets
%J Journal of the American Mathematical Society
%D 2000
%P 665-695
%V 13
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00338-6/
%R 10.1090/S0894-0347-00-00338-6
%F 10_1090_S0894_0347_00_00338_6
White, Brian. The size of the singular set in mean curvature flow of mean-convex sets. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 665-695. doi: 10.1090/S0894-0347-00-00338-6

[1] Brakke, Kenneth A. The motion of a surface by its mean curvature 1978

[2] Chen, Yun Gang, Giga, Yoshikazu, Goto, Shun’Ichi Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations J. Differential Geom. 1991 749 786

[3] Trjitzinsky, W. J. General theory of singular integral equations with real kernels Trans. Amer. Math. Soc. 1939 202 279

[4] Federer, Herbert The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension Bull. Amer. Math. Soc. 1970 767 771

[5] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[6] Huisken, Gerhard Lecture one: mean curvature evolution of closed hypersurfaces 1997 117 123

[7] Huisken, Gerhard Asymptotic behavior for singularities of the mean curvature flow J. Differential Geom. 1990 285 299

[8] Huisken, Gerhard Local and global behaviour of hypersurfaces moving by mean curvature 1993 175 191

[9] Ilmanen, Tom Elliptic regularization and partial regularity for motion by mean curvature Mem. Amer. Math. Soc. 1994

[10] Ilmanen, Tom Generalized flow of sets by mean curvature on a manifold Indiana Univ. Math. J. 1992 671 705

[11] Ilmanen, Tom The level-set flow on a manifold 1993 193 204

[12] Lieberman, Gary M. Second order parabolic differential equations 1996

[13] Osher, Stanley, Sethian, James A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49

[14] Simons, James Minimal varieties in riemannian manifolds Ann. of Math. (2) 1968 62 105

[15] Simon, Leon Lectures on geometric measure theory 1983

[16] Schoen, Richard, Simon, Leon Regularity of stable minimal hypersurfaces Comm. Pure Appl. Math. 1981 741 797

[17] Stone, Andrew A density function and the structure of singularities of the mean curvature flow Calc. Var. Partial Differential Equations 1994 443 480

[18] White, Brian Partial regularity of mean-convex hypersurfaces flowing by mean curvature Internat. Math. Res. Notices 1994

[19] White, Brian The topology of hypersurfaces moving by mean curvature Comm. Anal. Geom. 1995 317 333

[20] White, Brian Stratification of minimal surfaces, mean curvature flows, and harmonic maps J. Reine Angew. Math. 1997 1 35

Cité par Sources :