Syzygies of abelian varieties
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 651-664

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a conjecture of R. Lazarsfeld on the syzygies (of the homogeneous ideal) of abelian varieties embedded in projective space by multiples of an ample line bundle. Specifically, we prove that if $A$ is an ample line on an abelian variety, then $A^{\otimes n}$ satisfies the property $N_{p}$ as soon as $n\ge p+ 3$. The proof uses a criterion for the global generation of vector bundles on abelian varieties (generalizing the classical one for line bundles) and a criterion for the surjectivity of multiplication maps of global sections of two vector bundles in terms of the vanishing of the cohomology of certain twists of their Pontrjagin product.
DOI : 10.1090/S0894-0347-00-00335-0

Pareschi, Giuseppe 1

1 Dipartimento di Matematica, Università di Roma, Tor Vergata V.le della Ricerca Scientifica, I-00133 Roma, Italy
@article{10_1090_S0894_0347_00_00335_0,
     author = {Pareschi, Giuseppe},
     title = {Syzygies of abelian varieties},
     journal = {Journal of the American Mathematical Society},
     pages = {651--664},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00335-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00335-0/}
}
TY  - JOUR
AU  - Pareschi, Giuseppe
TI  - Syzygies of abelian varieties
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 651
EP  - 664
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00335-0/
DO  - 10.1090/S0894-0347-00-00335-0
ID  - 10_1090_S0894_0347_00_00335_0
ER  - 
%0 Journal Article
%A Pareschi, Giuseppe
%T Syzygies of abelian varieties
%J Journal of the American Mathematical Society
%D 2000
%P 651-664
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00335-0/
%R 10.1090/S0894-0347-00-00335-0
%F 10_1090_S0894_0347_00_00335_0
Pareschi, Giuseppe. Syzygies of abelian varieties. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 651-664. doi: 10.1090/S0894-0347-00-00335-0

[1] Ein, Lawrence, Lazarsfeld, Robert Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension Invent. Math. 1993 51 67

[2] Green, Mark L. Koszul cohomology and the geometry of projective varieties J. Differential Geom. 1984 125 171

[3] Green, Mark L. Koszul cohomology and geometry 1989 177 200

[4] Kempf, George Toward the inversion of abelian integrals. I Ann. of Math. (2) 1979 243 273

[5] Kempf, George Toward the inversion of abelian integrals. I Ann. of Math. (2) 1979 243 273

[6] Kempf, George R. Multiplication over abelian varieties Amer. J. Math. 1988 765 773

[7] Kempf, George R. Linear systems on abelian varieties Amer. J. Math. 1989 65 94

[8] Kempf, George R. Projective coordinate rings of abelian varieties 1989 225 235

[9] Trjitzinsky, W. J. General theory of singular integral equations with real kernels Trans. Amer. Math. Soc. 1939 202 279

[10] Koizumi, Shoji Theta relations and projective normality of Abelian varieties Amer. J. Math. 1976 865 889

[11] Lazarsfeld, Robert A sampling of vector bundle techniques in the study of linear series 1989 500 559

[12] Mumford, D. On the equations defining abelian varieties. I Invent. Math. 1966 287 354

[13] Mumford, David Varieties defined by quadratic equations 1970 29 100

[14] Mumford, David Abelian varieties 1970

[15] Mukai, Shigeru Duality between 𝐷(𝑋) and 𝐷(𝑋̂) with its application to Picard sheaves Nagoya Math. J. 1981 153 175

[16] Sekiguchi, Tsutomu On the normal generation by a line bundle on an Abelian variety Proc. Japan Acad. Ser. A Math. Sci. 1978 185 188

Cité par Sources :