Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 595-609

Voir la notice de l'article provenant de la source American Mathematical Society

We provide an explicit quantization of dynamical r-matrices for semisimple Lie algebras, classified earlier by the third author, which includes the Belavin-Drinfeld r-matrices. We do so by constructing an appropriate (dynamical) twist in the tensor square of the Drinfeld-Jimbo quantum group $U_q(\mathfrak g)$, which twists the R-matrix of $U_q(\mathfrak g)$ into the desired quantization. The construction of this twist is based on the method stemming from the work of Jimbo-Konno-Odake-Shiraishi and Arnaudon-Buffenoir-Ragoucy-Roche, i.e. on defining the twist as a unique solution of a suitable difference equation. This yields a simple closed formula for the twist. This construction allows one to confirm the alternate version of the Gerstenhaber-Giaquinto-Schack conjecture (about quantization of Belavin-Drinfeld r-matrices for $\mathfrak {sl}(n)$ in the vector representation), which was stated earlier by the second author on the basis of computer evidence. It also allows one to define new quantum groups associated to semisimple Lie algebras. We expect them to have a rich structure and interesting representation theory.
DOI : 10.1090/S0894-0347-00-00333-7

Etingof, Pavel 1 ; Schedler, Travis 2 ; Schiffmann, Olivier 3, 4

1 Department of Mathematics, Room 2-165, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
2 059 Pforzheimer House Mail Center, Cambridge, Massachusetts 02138
3 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
4 Department of Mathematics, Yale University, New Haven, Connecticut 06520
@article{10_1090_S0894_0347_00_00333_7,
     author = {Etingof, Pavel and Schedler, Travis and Schiffmann, Olivier},
     title = {Explicit quantization of dynamical r-matrices for finite dimensional semisimple {Lie} algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {595--609},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00333-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00333-7/}
}
TY  - JOUR
AU  - Etingof, Pavel
AU  - Schedler, Travis
AU  - Schiffmann, Olivier
TI  - Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 595
EP  - 609
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00333-7/
DO  - 10.1090/S0894-0347-00-00333-7
ID  - 10_1090_S0894_0347_00_00333_7
ER  - 
%0 Journal Article
%A Etingof, Pavel
%A Schedler, Travis
%A Schiffmann, Olivier
%T Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
%J Journal of the American Mathematical Society
%D 2000
%P 595-609
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00333-7/
%R 10.1090/S0894-0347-00-00333-7
%F 10_1090_S0894_0347_00_00333_7
Etingof, Pavel; Schedler, Travis; Schiffmann, Olivier. Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 595-609. doi: 10.1090/S0894-0347-00-00333-7

[1] Arnaudon, D., Buffenoir, E., Ragoucy, E., Roche, Ph. Universal solutions of quantum dynamical Yang-Baxter equations Lett. Math. Phys. 1998 201 214

[2] Belavin, A. A., Drinfel′D, V. G. Triangle equations and simple Lie algebras 1984 93 165

[3] Cremmer, Eugã¨Ne, Gervais, Jean-Loup The quantum group structure associated with nonlinearly extended Virasoro algebras Comm. Math. Phys. 1990 619 632

[4] Chari, Vyjayanthi, Pressley, Andrew A guide to quantum groups 1994

[5] Etingof, Pavel, Kazhdan, David Quantization of Lie bialgebras. I Selecta Math. (N.S.) 1996 1 41

[6] Gerstenhaber, Murray, Giaquinto, Anthony, Schack, Samuel D. Construction of quantum groups from Belavin-Drinfel′d infinitesimals 1993 45 64

[7] Giaquinto, Anthony, Hodges, Timothy J. Nonstandard solutions of the Yang-Baxter equation Lett. Math. Phys. 1998 67 75

[8] Hodges, Timothy J. The Cremmer-Gervais solution of the Yang-Baxter equation Proc. Amer. Math. Soc. 1999 1819 1826

[9] Hodges, Timothy J. Nonstandard quantum groups associated to certain Belavin-Drinfeld triples 1998 63 70

[10] Khoroshkin, S. M., Tolstoy, V. N. Universal 𝑅-matrix for quantized (super)algebras Comm. Math. Phys. 1991 599 617

[11] Schiffmann, Olivier On classification of dynamical r-matrices Math. Res. Lett. 1998 13 30

Cité par Sources :