Représentations 𝑝-adiques et normes universelles I. Le cas cristallin
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 533-551

Voir la notice de l'article provenant de la source American Mathematical Society

Let $V$ be a crystalline $p$-adic representation of the absolute Galois group $G_K$ of an finite unramified extension $K$ of $\mathbb {Q}_p$, and let $T$ be a lattice of $V$ stable by $G_K$. We prove the following result: Let $\mathrm {Fil}^1V$ be the maximal sub-representation of $V$ with Hodge-Tate weights strictly positive and $\mathrm {Fil}^1T=T\cap \mathrm {Fil}^1V$. Then, the projective limit of $H^1_g(K(\mu _{p^n}), T)$ is equal up to torsion to the projective limit of $H^1(K(\mu _{p^n}), \mathrm {Fil} ^1T)$. So its rank over the Iwasawa algebra is $[K:\mathbb {Q}_p]\operatorname {dim}\mathrm {Fil}^1 V$.
DOI : 10.1090/S0894-0347-00-00329-5

Perrin-Riou, Bernadette 1

1 Département de Mathématiques, UMR 8628 du CNRS, bât 425, Université Paris-Sud, F-91405 Orsay Cedex, France
@article{10_1090_S0894_0347_00_00329_5,
     author = {Perrin-Riou, Bernadette},
     title = {Repr\~A{\textcopyright}sentations {\dh}‘-adiques et normes universelles {I.} {Le} cas cristallin},
     journal = {Journal of the American Mathematical Society},
     pages = {533--551},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00329-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00329-5/}
}
TY  - JOUR
AU  - Perrin-Riou, Bernadette
TI  - Représentations 𝑝-adiques et normes universelles I. Le cas cristallin
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 533
EP  - 551
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00329-5/
DO  - 10.1090/S0894-0347-00-00329-5
ID  - 10_1090_S0894_0347_00_00329_5
ER  - 
%0 Journal Article
%A Perrin-Riou, Bernadette
%T Représentations 𝑝-adiques et normes universelles I. Le cas cristallin
%J Journal of the American Mathematical Society
%D 2000
%P 533-551
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00329-5/
%R 10.1090/S0894-0347-00-00329-5
%F 10_1090_S0894_0347_00_00329_5
Perrin-Riou, Bernadette. Représentations 𝑝-adiques et normes universelles I. Le cas cristallin. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 533-551. doi: 10.1090/S0894-0347-00-00329-5

[1] Coates, J., Greenberg, R. Kummer theory for abelian varieties over local fields Invent. Math. 1996 129 174

[2] Dwork, Bernard, Gerotto, Giovanni, Sullivan, Francis J. An introduction to 𝐺-functions 1994

[3] Fontaine, Jean-Marc Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate 1979 3 80

[4] Hazewinkel, Michiel On norm maps for one dimensional formal groups. I. The cyclotomic Γ-extension J. Algebra 1974 89 108

[5] Hazewinkel, Michiel On norm maps for one dimensional formal groups. II. 𝐺-extensions of local fields with algebraically closed residue field J. Reine Angew. Math. 1974 222 250

[6] Hazewinkel, Michiel On norm maps for one dimensional formal groups. III Duke Math. J. 1977 305 314

[7] Katz, Nicholas M. Slope filtration of 𝐹-crystals 1979 113 163

[8] Manin, Ju. I. Cyclotomic fields and modular curves Uspehi Mat. Nauk 1971 7 71

[9] Mazur, Barry Rational points of abelian varieties with values in towers of number fields Invent. Math. 1972 183 266

[10] Perrin-Riou, Bernadette Théorie d’Iwasawa 𝑝-adique locale et globale Invent. Math. 1990 247 292

[11] Perrin-Riou, Bernadette Théorie d’Iwasawa et hauteurs 𝑝-adiques Invent. Math. 1992 137 185

[12] Perrin-Riou, Bernadette Théorie d’Iwasawa des représentations 𝑝-adiques sur un corps local Invent. Math. 1994 81 161

[13] Schneider, Peter Arithmetic of formal groups and applications. I. Universal norm subgroups Invent. Math. 1987 587 602

[14] Totaro, Burt Tensor products in 𝑝-adic Hodge theory Duke Math. J. 1996 79 104

Cité par Sources :