Interpolating hereditarily indecomposable Banach spaces
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 243-294

Voir la notice de l'article provenant de la source American Mathematical Society

The following dichotomy is proved. Every Banach space either contains a subspace isomorphic to $\ell ^1$, or it has an infinite-dimensional closed subspace which is a quotient of a Hereditarily Indecomposable (H.I.) separable Banach space. In the particular case of $L^p(\lambda ),\ 1$, it is shown that the space itself is a quotient of a H.I. space. The factorization of certain classes of operators, acting between Banach spaces, through H.I. spaces is also investigated. Among others it is shown that the identity operator $I: L^{\infty }(\lambda )\to L^1(\lambda )$ admits a factorization through a H.I. space. The same result holds for every strictly singular operator $T: \ell ^p\to \ell ^q,\ 1$. Interpolation methods and the geometric concept of thin convex sets together with the techniques concerning the construction of Hereditarily Indecomposable spaces are used to obtain the above mentioned results.
DOI : 10.1090/S0894-0347-00-00325-8

Argyros, S. A. 1 ; Felouzis, V. 1

1 Department of Mathematics, University of Athens, Athens, Greece
@article{10_1090_S0894_0347_00_00325_8,
     author = {Argyros, S. A. and Felouzis, V.},
     title = {Interpolating hereditarily indecomposable {Banach} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {243--294},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00325-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00325-8/}
}
TY  - JOUR
AU  - Argyros, S. A.
AU  - Felouzis, V.
TI  - Interpolating hereditarily indecomposable Banach spaces
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 243
EP  - 294
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00325-8/
DO  - 10.1090/S0894-0347-00-00325-8
ID  - 10_1090_S0894_0347_00_00325_8
ER  - 
%0 Journal Article
%A Argyros, S. A.
%A Felouzis, V.
%T Interpolating hereditarily indecomposable Banach spaces
%J Journal of the American Mathematical Society
%D 2000
%P 243-294
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00325-8/
%R 10.1090/S0894-0347-00-00325-8
%F 10_1090_S0894_0347_00_00325_8
Argyros, S. A.; Felouzis, V. Interpolating hereditarily indecomposable Banach spaces. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 243-294. doi: 10.1090/S0894-0347-00-00325-8

[1] Alspach, Dale E., Argyros, Spiros Complexity of weakly null sequences Dissertationes Math. (Rozprawy Mat.) 1992 44

[2] Argyros, S. A., Deliyanni, I. Examples of asymptotic 𝑙₁ Banach spaces Trans. Amer. Math. Soc. 1997 973 995

[3] Argyros, S. A., Mercourakis, S., Tsarpalias, A. Convex unconditionality and summability of weakly null sequences Israel J. Math. 1998 157 193

[4] Bellenot, Steven F. Tsirelson superspaces and 𝑙_{𝑝} J. Funct. Anal. 1986 207 228

[5] Bourgain, J. On convergent sequences of continuous functions Bull. Soc. Math. Belg. Sér. B 1980 235 249

[6] Diestel, Joseph Sequences and series in Banach spaces 1984

[7] Davis, W. J., Figiel, T., Johnson, W. B., Peå‚Czyå„Ski, A. Factoring weakly compact operators J. Functional Analysis 1974 311 327

[8] Ferenczi, V. A uniformly convex hereditarily indecomposable Banach space Israel J. Math. 1997 199 225

[9] Hopkins, Charles Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730

[10] Gowers, W. T. A new dichotomy for Banach spaces Geom. Funct. Anal. 1996 1083 1093

[11] Gowers, W. T. A Banach space not containing 𝑐₀,𝑙₁ or a reflexive subspace Trans. Amer. Math. Soc. 1994 407 420

[12] Gowers, W. Timothy A remark about the scalar-plus-compact problem 1999 111 115

[13] Gowers, W. T., Maurey, B. The unconditional basic sequence problem J. Amer. Math. Soc. 1993 851 874

[14] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[15] Kechris, Alexander S. Classical descriptive set theory 1995

[16] Kuratowski, K., Mostowski, A. Set theory 1968

[17] Kalton, Nigel, Wilansky, Albert Tauberian operators on Banach spaces Proc. Amer. Math. Soc. 1976 251 255

[18] Lacey, H. Elton The isometric theory of classical Banach spaces 1974

[19] Leung, Denny H. On 𝑐₀-saturated Banach spaces Illinois J. Math. 1995 15 29

[20] Lindenstrauss, Joram, Tzafriri, Lior Classical Banach spaces. I 1977

[21] Maurey, B., Rosenthal, H. P. Normalized weakly null sequence with no unconditional subsequence Studia Math. 1977 77 98

[22] Milman, Vitali D., Schechtman, Gideon Asymptotic theory of finite-dimensional normed spaces 1986

[23] Neidinger, Richard, Rosenthal, Haskell P. Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators Pacific J. Math. 1985 215 228

[24] Odell, Edward, Schlumprecht, Thomas The distortion problem Acta Math. 1994 259 281

[25] Schlumprecht, Thomas An arbitrarily distortable Banach space Israel J. Math. 1991 81 95

[26] Tomczak-Jaegermann, N. Banach spaces of type 𝑝 have arbitrarily distortable subspaces Geom. Funct. Anal. 1996 1074 1082

[27] Tsarpalias, A. A note on the Ramsey property Proc. Amer. Math. Soc. 1999 583 587

Cité par Sources :