Crystal bases for the quantum superalgebra 𝑈_{𝑞}(𝔤𝔩(𝔪,𝔫))
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 295-331

Voir la notice de l'article provenant de la source American Mathematical Society

A crystal base theory is introduced for the quantized enveloping algebra of the general linear Lie superalgebra $\mathfrak {gl}(m,n)$, and an explicit realization of the crystal base is given in terms of semistandard tableaux.
DOI : 10.1090/S0894-0347-00-00321-0

Benkart, Georgia 1 ; Kang, Seok-Jin 2 ; Kashiwara, Masaki 3

1 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706–1388
2 Department of Mathematics, Seoul National University, Seoul 151-742, Korea
3 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606–8502, Japan
@article{10_1090_S0894_0347_00_00321_0,
     author = {Benkart, Georgia and Kang, Seok-Jin and Kashiwara, Masaki},
     title = {Crystal bases for the quantum superalgebra {\dh}‘ˆ_{{\dh}‘ž}({\dh}”{\textcurrency}{\dh}”{\textcopyright}({\dh}”{\textordfeminine},{\dh}”{\guillemotleft}))},
     journal = {Journal of the American Mathematical Society},
     pages = {295--331},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00321-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00321-0/}
}
TY  - JOUR
AU  - Benkart, Georgia
AU  - Kang, Seok-Jin
AU  - Kashiwara, Masaki
TI  - Crystal bases for the quantum superalgebra 𝑈_{𝑞}(𝔤𝔩(𝔪,𝔫))
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 295
EP  - 331
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00321-0/
DO  - 10.1090/S0894-0347-00-00321-0
ID  - 10_1090_S0894_0347_00_00321_0
ER  - 
%0 Journal Article
%A Benkart, Georgia
%A Kang, Seok-Jin
%A Kashiwara, Masaki
%T Crystal bases for the quantum superalgebra 𝑈_{𝑞}(𝔤𝔩(𝔪,𝔫))
%J Journal of the American Mathematical Society
%D 2000
%P 295-331
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00321-0/
%R 10.1090/S0894-0347-00-00321-0
%F 10_1090_S0894_0347_00_00321_0
Benkart, Georgia; Kang, Seok-Jin; Kashiwara, Masaki. Crystal bases for the quantum superalgebra 𝑈_{𝑞}(𝔤𝔩(𝔪,𝔫)). Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 295-331. doi: 10.1090/S0894-0347-00-00321-0

[1] Benkart, Georgia, Shader, Chanyoung Lee, Ram, Arun Tensor product representations for orthosymplectic Lie superalgebras J. Pure Appl. Algebra 1998 1 48

[2] Berele, A., Regev, A. Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras Adv. in Math. 1987 118 175

[3] Jantzen, Jens Carsten Lectures on quantum groups 1996

[4] Kac, V. G. Lie superalgebras Advances in Math. 1977 8 96

[5] Kac, V. Representations of classical Lie superalgebras 1978 597 626

[6] Kang, Seok-Jin, Misra, Kailash C. Crystal bases and tensor product decompositions of 𝑈_{𝑞}(𝐺₂)-modules J. Algebra 1994 675 691

[7] Kashiwara, Masaki Crystalizing the 𝑞-analogue of universal enveloping algebras Comm. Math. Phys. 1990 249 260

[8] Kashiwara, M. On crystal bases of the 𝑄-analogue of universal enveloping algebras Duke Math. J. 1991 465 516

[9] Kashiwara, Masaki, Nakashima, Toshiki Crystal graphs for representations of the 𝑞-analogue of classical Lie algebras J. Algebra 1994 295 345

[10] Khoroshkin, S. M., Tolstoy, V. N. Universal 𝑅-matrix for quantized (super)algebras Comm. Math. Phys. 1991 599 617

[11] Littelmann, Peter Crystal graphs and Young tableaux J. Algebra 1995 65 87

[12] Misra, Kailash, Miwa, Tetsuji Crystal base for the basic representation of 𝑈_{𝑞}(𝔰𝔩(𝔫)) Comm. Math. Phys. 1990 79 88

[13] Musson, Ian M., Zou, Yi Ming Crystal bases for 𝑈_{𝑞}(𝑜𝑠𝑝(1,2𝑟)) J. Algebra 1998 514 534

[14] Nakashima, Toshiki Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras Comm. Math. Phys. 1993 215 243

[15] Rittenberg, V., Scheunert, M. A remarkable connection between the representations of the Lie superalgebras 𝑜𝑠𝑝(1,2𝑛) and the Lie algebras 𝑜(2𝑛+1) Comm. Math. Phys. 1982 1 9

[16] Sundaram, Sheila Orthogonal tableaux and an insertion algorithm for 𝑆𝑂(2𝑛+1) J. Combin. Theory Ser. A 1990 239 256

[17] Yamane, Hiroyuki Quantized enveloping algebras associated with simple Lie superalgebras and their universal 𝑅-matrices Publ. Res. Inst. Math. Sci. 1994 15 87

[18] Zou, Yi Ming Crystal bases for 𝑈_{𝑞}(𝑠𝑙(2,1)) Proc. Amer. Math. Soc. 1999 2213 2223

Cité par Sources :