Voir la notice de l'article provenant de la source Numdam
Given a graph and a “cost function” (provided by an oracle), the problem [PCliqW] consists in finding a partition into cliques of of minimum cost. Here, the cost of a partition is the sum of the costs of the cliques in the partition. We provide a polynomial time dynamic program for the case where is an interval graph and belongs to a subclass of submodular set functions, which we call “value-polymatroidal”. This provides a common solution for various generalizations of the coloring problem in co-interval graphs such as max-coloring, “Greene-Kleitman’s dual”, probabilist coloring and chromatic entropy. In the last two cases, this is the first polytime algorithm for co-interval graphs. In contrast, NP-hardness of related problems is discussed. We also describe an ILP formulation for [PCliqW] which gives a common polyhedral framework to express min-max relations such as for perfect graphs and the polymatroid intersection theorem. This approach allows to provide a min-max formula for [PCliqW] if is the line-graph of a bipartite graph and is submodular. However, this approach fails to provide a min-max relation for [PCliqW] if is an interval graphs and is value-polymatroidal.
Keywords: partition into cliques, interval graphs, circular arc graphs, max-coloring, probabilist coloring, chromatic entropy, partial $q$-coloring, batch-scheduling, submodular functions, bipartite matchings, split graphs
@article{RO_2007__41_3_275_0,
author = {Gijswijt, Dion and Jost, Vincent and Queyranne, Maurice},
title = {Clique partitioning of interval graphs with submodular costs on the cliques},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {275--287},
publisher = {EDP-Sciences},
volume = {41},
number = {3},
year = {2007},
doi = {10.1051/ro:2007024},
mrnumber = {2348002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/}
}
TY - JOUR AU - Gijswijt, Dion AU - Jost, Vincent AU - Queyranne, Maurice TI - Clique partitioning of interval graphs with submodular costs on the cliques JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 275 EP - 287 VL - 41 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/ DO - 10.1051/ro:2007024 LA - en ID - RO_2007__41_3_275_0 ER -
%0 Journal Article %A Gijswijt, Dion %A Jost, Vincent %A Queyranne, Maurice %T Clique partitioning of interval graphs with submodular costs on the cliques %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 275-287 %V 41 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/ %R 10.1051/ro:2007024 %G en %F RO_2007__41_3_275_0
Gijswijt, Dion; Jost, Vincent; Queyranne, Maurice. Clique partitioning of interval graphs with submodular costs on the cliques. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 275-287. doi: 10.1051/ro:2007024
Cité par Sources :
