Clique partitioning of interval graphs with submodular costs on the cliques
RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 275-287

Voir la notice de l'article provenant de la source Numdam

Given a graph G=(V,E) and a “cost function” f:2 V (provided by an oracle), the problem [PCliqW] consists in finding a partition into cliques of V(G) of minimum cost. Here, the cost of a partition is the sum of the costs of the cliques in the partition. We provide a polynomial time dynamic program for the case where G is an interval graph and f belongs to a subclass of submodular set functions, which we call “value-polymatroidal”. This provides a common solution for various generalizations of the coloring problem in co-interval graphs such as max-coloring, “Greene-Kleitman’s dual”, probabilist coloring and chromatic entropy. In the last two cases, this is the first polytime algorithm for co-interval graphs. In contrast, NP-hardness of related problems is discussed. We also describe an ILP formulation for [PCliqW] which gives a common polyhedral framework to express min-max relations such as χ ¯=α for perfect graphs and the polymatroid intersection theorem. This approach allows to provide a min-max formula for [PCliqW] if G is the line-graph of a bipartite graph and f is submodular. However, this approach fails to provide a min-max relation for [PCliqW] if G is an interval graphs and f is value-polymatroidal.

DOI : 10.1051/ro:2007024
Classification : 90C27, 05C15
Keywords: partition into cliques, interval graphs, circular arc graphs, max-coloring, probabilist coloring, chromatic entropy, partial $q$-coloring, batch-scheduling, submodular functions, bipartite matchings, split graphs
@article{RO_2007__41_3_275_0,
     author = {Gijswijt, Dion and Jost, Vincent and Queyranne, Maurice},
     title = {Clique partitioning of interval graphs with submodular costs on the cliques},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {275--287},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {3},
     year = {2007},
     doi = {10.1051/ro:2007024},
     mrnumber = {2348002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/}
}
TY  - JOUR
AU  - Gijswijt, Dion
AU  - Jost, Vincent
AU  - Queyranne, Maurice
TI  - Clique partitioning of interval graphs with submodular costs on the cliques
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2007
SP  - 275
EP  - 287
VL  - 41
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/
DO  - 10.1051/ro:2007024
LA  - en
ID  - RO_2007__41_3_275_0
ER  - 
%0 Journal Article
%A Gijswijt, Dion
%A Jost, Vincent
%A Queyranne, Maurice
%T Clique partitioning of interval graphs with submodular costs on the cliques
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2007
%P 275-287
%V 41
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro:2007024/
%R 10.1051/ro:2007024
%G en
%F RO_2007__41_3_275_0
Gijswijt, Dion; Jost, Vincent; Queyranne, Maurice. Clique partitioning of interval graphs with submodular costs on the cliques. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 275-287. doi: 10.1051/ro:2007024

Cité par Sources :