Voir la notice de l'article provenant de la source Numdam
This paper presents a feasible primal algorithm for linear semidefinite programming. The algorithm starts with a strictly feasible solution, but in case where no such a solution is known, an application of the algorithm to an associate problem allows to obtain one. Finally, we present some numerical experiments which show that the algorithm works properly.
@article{RO_2007__41_1_49_0, author = {Benterki, Djamel and Crouzeix, Jean-Pierre and Merikhi, Bachir}, title = {A numerical feasible interior point method for linear semidefinite programs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {49--59}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/ro:2007006}, mrnumber = {2310539}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro:2007006/} }
TY - JOUR AU - Benterki, Djamel AU - Crouzeix, Jean-Pierre AU - Merikhi, Bachir TI - A numerical feasible interior point method for linear semidefinite programs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 49 EP - 59 VL - 41 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro:2007006/ DO - 10.1051/ro:2007006 LA - en ID - RO_2007__41_1_49_0 ER -
%0 Journal Article %A Benterki, Djamel %A Crouzeix, Jean-Pierre %A Merikhi, Bachir %T A numerical feasible interior point method for linear semidefinite programs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 49-59 %V 41 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro:2007006/ %R 10.1051/ro:2007006 %G en %F RO_2007__41_1_49_0
Benterki, Djamel; Crouzeix, Jean-Pierre; Merikhi, Bachir. A numerical feasible interior point method for linear semidefinite programs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 49-59. doi: 10.1051/ro:2007006
Cité par Sources :