Voir la notice de l'article provenant de la source Numdam
Let and be two probability measures on the real line and let be a lower semicontinuous function on the plane. The mass transfer problem consists in determining a measure whose marginals coincide with and , and whose total cost is minimum. In this paper we present three algorithms to solve numerically this Monge-Kantorovitch problem when the commodity being shipped is one-dimensional and not necessarily confined to a bounded interval. We illustrate these numerical methods and determine the convergence rate.
@article{RO_2006__40_1_1_0, author = {Dubuc, Serge and Kagabo, Issa}, title = {Numerical solutions of the mass transfer problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1--17}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/ro:2006011}, mrnumber = {2248419}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro:2006011/} }
TY - JOUR AU - Dubuc, Serge AU - Kagabo, Issa TI - Numerical solutions of the mass transfer problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2006 SP - 1 EP - 17 VL - 40 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro:2006011/ DO - 10.1051/ro:2006011 LA - en ID - RO_2006__40_1_1_0 ER -
%0 Journal Article %A Dubuc, Serge %A Kagabo, Issa %T Numerical solutions of the mass transfer problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2006 %P 1-17 %V 40 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro:2006011/ %R 10.1051/ro:2006011 %G en %F RO_2006__40_1_1_0
Dubuc, Serge; Kagabo, Issa. Numerical solutions of the mass transfer problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 40 (2006) no. 1, pp. 1-17. doi: 10.1051/ro:2006011
Cité par Sources :