The maximum capacity shortest path problem : generation of efficient solution sets
RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 1-19

Voir la notice de l'article provenant de la source Numdam

Individual items of flow in a telecommunications or a transportation network may need to be separated by a minimum distance or time, called a “headway”. If link dependent, such restrictions in general have the effect that the minimum time path for a “convoy” of items to travel from a given origin to a given destination will depend on the size of the convoy. The Quickest Path problem seeks a path to minimise this convoy travel time. A closely related bicriterion problem is the Maximum Capacity Shortest Path problem. For this latter problem, an effective implementation is devised for an algorithm to determine desired sets of efficient solutions which in turn facilitates the search for a “best” compromise solution. Numerical experience with the algorithm is reported.

DOI : 10.1051/ro:2002002
Classification : 90B10, 90B18
Keywords: quickest path, shortest path, path capacity, efficient solution
@article{RO_2002__36_1_1_0,
     author = {Boffey, T. Brian and Williams, R. C. and Pelegr{\'\i}n, B. and Fernandez, P.},
     title = {The maximum capacity shortest path problem : generation of efficient solution sets},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1--19},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     doi = {10.1051/ro:2002002},
     mrnumber = {1920376},
     zbl = {1006.90013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro:2002002/}
}
TY  - JOUR
AU  - Boffey, T. Brian
AU  - Williams, R. C.
AU  - Pelegrín, B.
AU  - Fernandez, P.
TI  - The maximum capacity shortest path problem : generation of efficient solution sets
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2002
SP  - 1
EP  - 19
VL  - 36
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro:2002002/
DO  - 10.1051/ro:2002002
LA  - en
ID  - RO_2002__36_1_1_0
ER  - 
%0 Journal Article
%A Boffey, T. Brian
%A Williams, R. C.
%A Pelegrín, B.
%A Fernandez, P.
%T The maximum capacity shortest path problem : generation of efficient solution sets
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2002
%P 1-19
%V 36
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro:2002002/
%R 10.1051/ro:2002002
%G en
%F RO_2002__36_1_1_0
Boffey, T. Brian; Williams, R. C.; Pelegrín, B.; Fernandez, P. The maximum capacity shortest path problem : generation of efficient solution sets. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 1-19. doi: 10.1051/ro:2002002

Cité par Sources :