Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1101-1117

Voir la notice de l'article provenant de la source Numdam

The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. This method include the already existing two practical nonlinear conjugate gradient methods, to combine the nice global convergence properties of Fletcher-Reeves method (abbreviated FR) and the good numerical performances of the Polak–Ribiére–Polyak method (abbreviated PRP), which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. Our numerical results show that of the new method is very efficient for the given test problems. In addition we will study the methods related to the new nonlinear conjugate gradient method.

DOI : 10.1051/ro/2017028
Classification : 65K05, 90C25, 90C26, 90C27, 90C30
Keywords: Unconstrained optimization, conjugate gradient method, line search, global convergence

Sellami, B. 1 ; Belloufi, M. 1 ; Chaib, Y. 1

1 Department of mathematics and informatics, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria.
@article{RO_2017__51_4_1101_0,
     author = {Sellami, B. and Belloufi, M. and Chaib, Y.},
     title = {Globally convergence of nonlinear conjugate gradient method for unconstrained optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1101--1117},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/ro/2017028},
     mrnumber = {3783936},
     zbl = {1398.65129},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2017028/}
}
TY  - JOUR
AU  - Sellami, B.
AU  - Belloufi, M.
AU  - Chaib, Y.
TI  - Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 1101
EP  - 1117
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2017028/
DO  - 10.1051/ro/2017028
LA  - en
ID  - RO_2017__51_4_1101_0
ER  - 
%0 Journal Article
%A Sellami, B.
%A Belloufi, M.
%A Chaib, Y.
%T Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 1101-1117
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2017028/
%R 10.1051/ro/2017028
%G en
%F RO_2017__51_4_1101_0
Sellami, B.; Belloufi, M.; Chaib, Y. Globally convergence of nonlinear conjugate gradient method for unconstrained optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1101-1117. doi: 10.1051/ro/2017028

Cité par Sources :