Voir la notice de l'article provenant de la source Numdam
In this paper, we establish approximate Lagrangian multiplier rule, Lagrangian duality and saddle point optimality for set optimization problem where the solutions are defined using set relations introduced by Kuroiwa (Kuroiwa D., The natural criteria in set-valued optimization. Su̅rikaisekikenkyu̅sho Ko̅kyu̅roku 1031 (1998) 85–90).
Lalitha, C. S. 1 ; Dhingra, Mansi 2
@article{RO_2017__51_3_819_0, author = {Lalitha, C. S. and Dhingra, Mansi}, title = {Approximate {Lagrangian} duality and saddle point optimality in set optimization}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {819--831}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/ro/2016068}, mrnumber = {3880527}, zbl = {1393.49013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2016068/} }
TY - JOUR AU - Lalitha, C. S. AU - Dhingra, Mansi TI - Approximate Lagrangian duality and saddle point optimality in set optimization JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 819 EP - 831 VL - 51 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2016068/ DO - 10.1051/ro/2016068 LA - en ID - RO_2017__51_3_819_0 ER -
%0 Journal Article %A Lalitha, C. S. %A Dhingra, Mansi %T Approximate Lagrangian duality and saddle point optimality in set optimization %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 819-831 %V 51 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2016068/ %R 10.1051/ro/2016068 %G en %F RO_2017__51_3_819_0
Lalitha, C. S.; Dhingra, Mansi. Approximate Lagrangian duality and saddle point optimality in set optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 819-831. doi: 10.1051/ro/2016068
Cité par Sources :