Automated Credit Rating Prediction in a competitive framework
RAIRO - Operations Research - Recherche Opérationnelle, Special issue - Advanced Optimization Approaches and Modern OR-Applications, Tome 50 (2016) no. 4-5, pp. 749-765

Voir la notice de l'article provenant de la source Numdam

Automated credit rating prediction (ACRP) algorithms are used to predict the ratings of bonds without having to trust one rating agency, like Moody’s, Fitch or S&P. Nevertheless, for the moment, the accuracy of ACRP algorithms is investigated by empirical tests. In this paper, the framework for a competitive analysis is set and afterwards in this framework, the definition of competitive ACRP algorithms and its demonstration is given. In this way, for a competitive ACRP algorithm, a worst-case guarantee concerning the misclassification error is offered. Furthermore, several ACRP algorithms from the literature are compared according their competitiveness.

DOI : 10.1051/ro/2016030
Classification : 49-02
Keywords: Automated credit rating prediction, competitive analysis, financial bond credit rating

Gangolf, Claude 1, 2 ; Dochow, Robert 1 ; Schmidt, Günter 1, 3 ; Tamisier, Thomas 2

1 Operations Research and Business Informatics Saarland University, 66123 Saarbrücken, Germany.
2 Luxembourg Institute of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg.
3 University of Cape Town, Department of Finance and Tax, Cape Town, South Africa.
@article{RO_2016__50_4-5_749_0,
     author = {Gangolf, Claude and Dochow, Robert and Schmidt, G\"unter and Tamisier, Thomas},
     title = {Automated {Credit} {Rating} {Prediction} in a competitive framework},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {749--765},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4-5},
     year = {2016},
     doi = {10.1051/ro/2016030},
     zbl = {1358.91106},
     mrnumber = {3570528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2016030/}
}
TY  - JOUR
AU  - Gangolf, Claude
AU  - Dochow, Robert
AU  - Schmidt, Günter
AU  - Tamisier, Thomas
TI  - Automated Credit Rating Prediction in a competitive framework
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2016
SP  - 749
EP  - 765
VL  - 50
IS  - 4-5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2016030/
DO  - 10.1051/ro/2016030
LA  - en
ID  - RO_2016__50_4-5_749_0
ER  - 
%0 Journal Article
%A Gangolf, Claude
%A Dochow, Robert
%A Schmidt, Günter
%A Tamisier, Thomas
%T Automated Credit Rating Prediction in a competitive framework
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2016
%P 749-765
%V 50
%N 4-5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2016030/
%R 10.1051/ro/2016030
%G en
%F RO_2016__50_4-5_749_0
Gangolf, Claude; Dochow, Robert; Schmidt, Günter; Tamisier, Thomas. Automated Credit Rating Prediction in a competitive framework. RAIRO - Operations Research - Recherche Opérationnelle, Special issue - Advanced Optimization Approaches and Modern OR-Applications, Tome 50 (2016) no. 4-5, pp. 749-765. doi: 10.1051/ro/2016030

Cité par Sources :