Voir la notice de l'article provenant de la source Numdam
We give sufficient conditions for deriving moderately exponential and/or parameterized time approximation schemata (, algorithms achieving ratios , for arbitrarily small ) for broad classes of combinatorial optimization problems via a well-known technique widely used for deriving exact algorithms, namely the branching tree pruning.
Escoffier, Bruno 1 ; Paschos, Vangelis Th. 2 ; Tourniaire, Emeric 2
@article{RO_2016__50_4-5_979_0, author = {Escoffier, Bruno and Paschos, Vangelis Th. and Tourniaire, Emeric}, title = {Super-polynomial approximation branching algorithms}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {979--994}, publisher = {EDP-Sciences}, volume = {50}, number = {4-5}, year = {2016}, doi = {10.1051/ro/2015060}, mrnumber = {3570543}, zbl = {1401.68360}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2015060/} }
TY - JOUR AU - Escoffier, Bruno AU - Paschos, Vangelis Th. AU - Tourniaire, Emeric TI - Super-polynomial approximation branching algorithms JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 979 EP - 994 VL - 50 IS - 4-5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2015060/ DO - 10.1051/ro/2015060 LA - en ID - RO_2016__50_4-5_979_0 ER -
%0 Journal Article %A Escoffier, Bruno %A Paschos, Vangelis Th. %A Tourniaire, Emeric %T Super-polynomial approximation branching algorithms %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 979-994 %V 50 %N 4-5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2015060/ %R 10.1051/ro/2015060 %G en %F RO_2016__50_4-5_979_0
Escoffier, Bruno; Paschos, Vangelis Th.; Tourniaire, Emeric. Super-polynomial approximation branching algorithms. RAIRO - Operations Research - Recherche Opérationnelle, Special issue - Advanced Optimization Approaches and Modern OR-Applications, Tome 50 (2016) no. 4-5, pp. 979-994. doi: 10.1051/ro/2015060
Cité par Sources :