Clustering of optimized data for email forensics
RAIRO - Operations Research - Recherche Opérationnelle, Special issue - Advanced Optimization Approaches and Modern OR-Applications, Tome 50 (2016) no. 4-5, pp. 951-963

Voir la notice de l'article provenant de la source Numdam

Forensics is a study of evidence to help the police solving crimes. If we apply (Forensics) in Computer Sciences domain, crimes are mainly network attacks found more in emails; which become nowadays the most popular way of communication accessible via Internet. We receive in our Inboxes emails gangs without being aware of them. Therefore, it is necessary to build an automatic checking system to filter good emails from bad ones. In this paper, we propose a new emails processing approach using Singular Value Decomposition method (SVD) to optimize emails data before applying Data Mining techniques (Clustering) to extract bad emails located in the mail servers where the user’s inboxes are hosted. Our study is based on filtering Emails (bads and goods) by the clustering of optimized data compared with unoptimized one.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2015057
Classification : 05C12, 05C50, 05B10, 91C20, 15A18, 34A05
Keywords: Email, feronsics, spam, SVD, LSI, optimisation, data mining, clustering

Salhi, Dhai Eddine 1 ; Tari, Abdelkamel 1 ; Kechadi, M-Tahar 2

1 University Abderrahmane Mira of bejaia, LIMED Laboratory, 06000 Bejaia, Algeria.
2 University college Dublin, Parallel Comptaional Research Group Laboratory, Dublin4, Dublin, Ireland.
@article{RO_2016__50_4-5_951_0,
     author = {Salhi, Dhai Eddine and Tari, Abdelkamel and Kechadi, M-Tahar},
     title = {Clustering of optimized data for email forensics},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {951--963},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4-5},
     year = {2016},
     doi = {10.1051/ro/2015057},
     mrnumber = {3570541},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2015057/}
}
TY  - JOUR
AU  - Salhi, Dhai Eddine
AU  - Tari, Abdelkamel
AU  - Kechadi, M-Tahar
TI  - Clustering of optimized data for email forensics
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2016
SP  - 951
EP  - 963
VL  - 50
IS  - 4-5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2015057/
DO  - 10.1051/ro/2015057
LA  - en
ID  - RO_2016__50_4-5_951_0
ER  - 
%0 Journal Article
%A Salhi, Dhai Eddine
%A Tari, Abdelkamel
%A Kechadi, M-Tahar
%T Clustering of optimized data for email forensics
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2016
%P 951-963
%V 50
%N 4-5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2015057/
%R 10.1051/ro/2015057
%G en
%F RO_2016__50_4-5_951_0
Salhi, Dhai Eddine; Tari, Abdelkamel; Kechadi, M-Tahar. Clustering of optimized data for email forensics. RAIRO - Operations Research - Recherche Opérationnelle, Special issue - Advanced Optimization Approaches and Modern OR-Applications, Tome 50 (2016) no. 4-5, pp. 951-963. doi: 10.1051/ro/2015057

Cité par Sources :