Voir la notice de l'article provenant de la source Numdam
The Fermat−Weber problem is a classical location problem that has the Weiszfeld algorithm as its main iterative solution method. This article presents a geometric interpretation of its local convergence for the particular case of three points, with the solution constrained to be an interior point, which is fundamental to the present geometric interpretation. This constraint, on the other hand, implies that the weights associated to each point must obey triangle inequalities. The eigenvalues analysis is developed considering that all weights have the same value, which simplifies calculation and explanation, but the generalization of this analysis is straightforward, as commented in the text. Step-size scaling is also considered for accelerating the convergence rate. The accompanying eigenvalues analysis determines step-size multiplier ranges that ensure convergence. Moreover, the eigenvalues depend on a parameter that is computed based on the sample points configuration.
Venceslau, Helder Manoel 1, 2 ; Karam Venceslau, Marilis Bahr 1, 3 ; Xavier, Adilson Elias 1 ; Maculan, Nelson 1
@article{RO_2016__50_1_157_0, author = {Venceslau, Helder Manoel and Karam Venceslau, Marilis Bahr and Xavier, Adilson Elias and Maculan, Nelson}, title = {A geometric perspective of the {Weiszfeld} algorithm for solving the {Fermat\ensuremath{-}Weber} problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {157--173}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ro/2015022}, zbl = {1333.90076}, mrnumber = {3460669}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2015022/} }
TY - JOUR AU - Venceslau, Helder Manoel AU - Karam Venceslau, Marilis Bahr AU - Xavier, Adilson Elias AU - Maculan, Nelson TI - A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 157 EP - 173 VL - 50 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2015022/ DO - 10.1051/ro/2015022 LA - en ID - RO_2016__50_1_157_0 ER -
%0 Journal Article %A Venceslau, Helder Manoel %A Karam Venceslau, Marilis Bahr %A Xavier, Adilson Elias %A Maculan, Nelson %T A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 157-173 %V 50 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2015022/ %R 10.1051/ro/2015022 %G en %F RO_2016__50_1_157_0
Venceslau, Helder Manoel; Karam Venceslau, Marilis Bahr; Xavier, Adilson Elias; Maculan, Nelson. A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 1, pp. 157-173. doi: 10.1051/ro/2015022
Cité par Sources :