Voir la notice de l'article provenant de la source Numdam
In this paper, a weighted-path-following interior point algorithm for -linear complementarity problems (-LCP) is presented. The algorithm uses at each weighted interior point iteration only feasible full-Newton steps and the strategy of the central-path for getting a solution for -LCP. We prove that the proposed algorithm has quadratically convergent with polynomial time. The complexity bound, namely, of the algorithm is obtained. Few numerical tests are reported to show the efficiency of the algorithm.
Achache, Mohamed 1
@article{RO_2016__50_1_131_0, author = {Achache, Mohamed}, title = {Complexity analysis of a {weighted-full-Newton} step interior-point algorithm for $P_{\ast{}}(\kappa{})${-LCP}}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {131--143}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ro/2015020}, zbl = {1333.90132}, mrnumber = {3460667}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2015020/} }
TY - JOUR AU - Achache, Mohamed TI - Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 131 EP - 143 VL - 50 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2015020/ DO - 10.1051/ro/2015020 LA - en ID - RO_2016__50_1_131_0 ER -
%0 Journal Article %A Achache, Mohamed %T Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 131-143 %V 50 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2015020/ %R 10.1051/ro/2015020 %G en %F RO_2016__50_1_131_0
Achache, Mohamed. Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 1, pp. 131-143. doi : 10.1051/ro/2015020. http://geodesic.mathdoc.fr/articles/10.1051/ro/2015020/
A weighted path-following method for the linear complementarity problem. Studia Univ. Babes-Bolyai, Informatica XLIX (2004) 61–73. | Zbl | MR
,A full-Newton step feasible weighted primal-dual interior point algorithm for monotone LCP. Afrika Matematika 26 (2015) 139–151. | Zbl | MR | DOI
and ,Large-update interior point algorithm for -linear complementarity problem. J. Inequalities Appl. 363 (2014) 1–12. | MR
,R.W. Cottle, J.S. Pang and R.E. Stone, The linear complementarity problem. Academic Press, San Deigo (1992). | Zbl | MR
A weighted-path-following method for linear optimization. Studia Univ. Babes-Bolyai, Informatica XLVII (2002). | Zbl | MR
,An algorithm based on weighted logarithmic barrier functions for linear complementarity problems. Arab. J. Sci. Eng. 15 (1990) 679–685. | Zbl | MR
and ,T. Illés and M. Nagy, The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem. Oper. Res. report (2004). | Zbl | MR
Primal-dual target-following algorithms for linear programming. Ann. Oper. Res. 62 (1997) 197–231. | Zbl | MR | DOI
, , and ,A quadratically convergent interior point algorithm for the matrix horizontal linear complementarity problem. J. Sci. Islamic Republic of Iran 23 (2012) 237–244. | MR
and ,I. Pólik, Novel analysis of interior point methods for linear optimization problems [in Hungarian]. Msc thesis, Eotvos Lorand University of Sciences. Faculty of Natural Sciences, Budapest (2002).
C. Roos, T. Terlaky and J. Ph. Vial, Theory and Algorithms for Linear optimization. An Interior Point Approach. John Wiley and Sons, Chichester (1997). | Zbl | MR
Polynomial interior-point algorithms for -horizontal linear complementarity problem. J. Comput. Appl. Math. 233 (2009) 249–263. | Zbl | MR
and ,A weighted path-following method for monotone horizontal linear complementarity problem. Fuzzy Inform. Eng. 54 (2009) 479–487. | Zbl | DOI
, and ,New complexity analysis of a full-Newton step feasible interior point algorithm for -LCP. Optim. Lett. 9 (2015) 1105–1119. | Zbl | MR | DOI
, , and ,A full-Newton step feasible interior-point algorithm for -linear complementarity problem. J. Global Optim. 59 (2014) 81–99. | Zbl | MR | DOI
, and ,S.J. Wright, Primal-dual interior point methods. Copyright by SIAM (1997). | Zbl | MR
Cité par Sources :