Voir la notice de l'article provenant de la source Numdam
We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The result on the Graphic TSP for cubic graphs is the first known inapproximability result on that problem. The proof technique in this paper uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest.
Karpinski, Marek 1 ; Schmied, Richard 2
@article{RO_2015__49_4_651_0, author = {Karpinski, Marek and Schmied, Richard}, title = {Approximation hardness of graphic {TSP} on cubic graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {651--668}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/ro/2014062}, mrnumber = {3350130}, zbl = {1341.68308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2014062/} }
TY - JOUR AU - Karpinski, Marek AU - Schmied, Richard TI - Approximation hardness of graphic TSP on cubic graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2015 SP - 651 EP - 668 VL - 49 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2014062/ DO - 10.1051/ro/2014062 LA - en ID - RO_2015__49_4_651_0 ER -
%0 Journal Article %A Karpinski, Marek %A Schmied, Richard %T Approximation hardness of graphic TSP on cubic graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2015 %P 651-668 %V 49 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2014062/ %R 10.1051/ro/2014062 %G en %F RO_2015__49_4_651_0
Karpinski, Marek; Schmied, Richard. Approximation hardness of graphic TSP on cubic graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 49 (2015) no. 4, pp. 651-668. doi: 10.1051/ro/2014062
Cité par Sources :