A linear fractional optimization over an integer efficient set
RAIRO - Operations Research - Recherche Opérationnelle, New challenges in scheduling theory, Tome 49 (2015) no. 2, pp. 265-278

Voir la notice de l'article provenant de la source Numdam

Mathematical optimization problems with a goal function, have many applications in various fields like financial sectors, management sciences and economic applications. Therefore, it is very important to have a powerful tool to solve such problems when the main criterion is not linear, particularly fractional, a ratio of two affine functions. In this paper, we propose an exact algorithm for optimizing a linear fractional function over the efficient set of a Multiple Objective Integer Linear Programming (MOILP) problem without having to enumerate all the efficient solutions. We iteratively add some constraints, that eliminate the undesirable (not interested) points and reduce, progressively, the admissible region. At each iteration, the solution is being evaluated at the reduced gradient cost vector and a new direction that improves the objective function is then defined. The algorithm was coded in MATLAB environment and tested over different instances randomly generated.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2014036
Classification : 90C10, 90C26, 90C32, 90C29
Keywords: Multiple criteria programming, fractional programming, Integer programming, efficient set

Mahdi, Sara 1 ; Chaabane, Djamal 1

1 USTHB University, Faculty of Mathematics, Department of Operations Research, Bab-Ezzouar, BP32 El-Alia, 16122 Algiers, Algeria.
@article{RO_2015__49_2_265_0,
     author = {Mahdi, Sara and Chaabane, Djamal},
     editor = {Blazewicz, Jacek and Pesch, Erwin and Philipps, Cynthia and Trystram, Denis and Zhang, Guochuan},
     title = {A linear fractional optimization over an integer efficient set},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {265--278},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/ro/2014036},
     zbl = {1310.90075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2014036/}
}
TY  - JOUR
AU  - Mahdi, Sara
AU  - Chaabane, Djamal
ED  - Blazewicz, Jacek
ED  - Pesch, Erwin
ED  - Philipps, Cynthia
ED  - Trystram, Denis
ED  - Zhang, Guochuan
TI  - A linear fractional optimization over an integer efficient set
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2015
SP  - 265
EP  - 278
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2014036/
DO  - 10.1051/ro/2014036
LA  - en
ID  - RO_2015__49_2_265_0
ER  - 
%0 Journal Article
%A Mahdi, Sara
%A Chaabane, Djamal
%E Blazewicz, Jacek
%E Pesch, Erwin
%E Philipps, Cynthia
%E Trystram, Denis
%E Zhang, Guochuan
%T A linear fractional optimization over an integer efficient set
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2015
%P 265-278
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2014036/
%R 10.1051/ro/2014036
%G en
%F RO_2015__49_2_265_0
Mahdi, Sara; Chaabane, Djamal. A linear fractional optimization over an integer efficient set. RAIRO - Operations Research - Recherche Opérationnelle, New challenges in scheduling theory, Tome 49 (2015) no. 2, pp. 265-278. doi: 10.1051/ro/2014036

Cité par Sources :