Voir la notice de l'article provenant de la source Numdam
In this paper, we show how optimization methods can be used efficiently to determine the parameters of an oscillatory model of handwriting. Because these methods have to be used in real-time applications, this involves that the optimization problems must be rapidely solved. Hence, we developed an original heuristic algorithm, named FHA. This code was validated by comparing it (accuracy/CPU-times) with a multistart method based on Trust Region Reflective algorithm.
@article{RO_2014__48_4_509_0, author = {Andr\'e, Ga\"etan and Messine, Fr\'ed\'eric}, title = {On finding optimal parameters of an oscillatory model of handwriting}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {509--520}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/ro/2014020}, mrnumber = {3264391}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2014020/} }
TY - JOUR AU - André, Gaëtan AU - Messine, Frédéric TI - On finding optimal parameters of an oscillatory model of handwriting JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 509 EP - 520 VL - 48 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2014020/ DO - 10.1051/ro/2014020 LA - en ID - RO_2014__48_4_509_0 ER -
%0 Journal Article %A André, Gaëtan %A Messine, Frédéric %T On finding optimal parameters of an oscillatory model of handwriting %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 509-520 %V 48 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2014020/ %R 10.1051/ro/2014020 %G en %F RO_2014__48_4_509_0
André, Gaëtan; Messine, Frédéric. On finding optimal parameters of an oscillatory model of handwriting. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 4, pp. 509-520. doi : 10.1051/ro/2014020. http://geodesic.mathdoc.fr/articles/10.1051/ro/2014020/
[1] G. André, www.irit.fr/∼Gaetan.Andre/publications.php.
[2] An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt. 6 (1993) 418-445. | Zbl | MR
and ,[3] On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67 (1994) 189-224. | Zbl | MR
and ,[4] Modélisation bayésienne d'une boucle de perception action : Application al'écriture (Bayesian Modelisation of a sensori-motor loop: application to reading and handwriting). Thesis, Joseph, Fourier University, Grenoble, France (2009).
,[5] An oscillatory theory of handwriting. Biol. Cybern. 156 (1981) 139-156.
,[6] The imprint of action: motor cortex involvement in visual perception of handwritten letters. NeuroImage 23 (2006) 681-688.
et al.,[7] Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69 (1993) 119-128.
et al.,[8] On-Line and Off-Line, Handwriting Recognition: A Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 63-84.
,[9] Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recogn. (IJDAR) 12 (2009) 169-298.
and ,[10] Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21 (1995) 32-53.
and ,Cité par Sources :