Voir la notice de l'article provenant de la source Numdam
Let G = (V,E) be a simple undirected graph. A forest F ⊆ E of G is said to be clique-connecting if each tree of F spans a clique of G. This paper adresses the clique-connecting forest polytope. First we give a formulation and a polynomial time separation algorithm. Then we show that the nontrivial nondegenerate facets of the stable set polytope are facets of the clique-connecting polytope. Finally we introduce a family of rank inequalities which are facets, and which generalize the clique inequalities.
@article{RO_2010__44_1_73_0, author = {Cornaz, Denis}, title = {Clique-connecting forest and stable set polytopes}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {73--83}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/ro/2010005}, mrnumber = {2642917}, zbl = {1221.05132}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2010005/} }
TY - JOUR AU - Cornaz, Denis TI - Clique-connecting forest and stable set polytopes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2010 SP - 73 EP - 83 VL - 44 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2010005/ DO - 10.1051/ro/2010005 LA - en ID - RO_2010__44_1_73_0 ER -
Cornaz, Denis. Clique-connecting forest and stable set polytopes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 1, pp. 73-83. doi: 10.1051/ro/2010005
Cité par Sources :