Central limit theorem for sampled sums of dependent random variables
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 299-314

Voir la notice de l'article provenant de la source Numdam

We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics 3 (2003) 477-497]. An application to parametric estimation by random sampling is also provided.

DOI : 10.1051/ps:2008030
Classification : Primary 60F05, 60G50, 62D05, Secondary 37C30, 37E05
Keywords: random walks, weak dependence, central limit theorem, dynamical systems, random sampling, parametric estimation
@article{PS_2010__14__299_0,
     author = {Guillotin-Plantard, Nadine and Prieur, Cl\'ementine},
     title = {Central limit theorem for sampled sums of dependent random variables},
     journal = {ESAIM: Probability and Statistics},
     pages = {299--314},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps:2008030},
     mrnumber = {2779486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008030/}
}
TY  - JOUR
AU  - Guillotin-Plantard, Nadine
AU  - Prieur, Clémentine
TI  - Central limit theorem for sampled sums of dependent random variables
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 299
EP  - 314
VL  - 14
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008030/
DO  - 10.1051/ps:2008030
LA  - en
ID  - PS_2010__14__299_0
ER  - 
%0 Journal Article
%A Guillotin-Plantard, Nadine
%A Prieur, Clémentine
%T Central limit theorem for sampled sums of dependent random variables
%J ESAIM: Probability and Statistics
%D 2010
%P 299-314
%V 14
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2008030/
%R 10.1051/ps:2008030
%G en
%F PS_2010__14__299_0
Guillotin-Plantard, Nadine; Prieur, Clémentine. Central limit theorem for sampled sums of dependent random variables. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 299-314. doi: 10.1051/ps:2008030

Cité par Sources :