Linear prediction of long-range dependent time series
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 115-134
Cet article a éte moissonné depuis la source Numdam
We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as tends to . The second predictor is the finite linear least-squares predictor i.e. the projection of the forecast value on the last observations. It is shown that these two predictors converge to the Wiener Kolmogorov predictor at the same rate .
DOI :
10.1051/ps:2008015
Classification :
62M20, 62M10
Keywords: Long-memory, linear model, autoregressive process, forecast error
Keywords: Long-memory, linear model, autoregressive process, forecast error
@article{PS_2009__13__115_0,
author = {Godet, Fanny},
title = {Linear prediction of long-range dependent time series},
journal = {ESAIM: Probability and Statistics},
pages = {115--134},
year = {2009},
publisher = {EDP-Sciences},
volume = {13},
doi = {10.1051/ps:2008015},
mrnumber = {2502026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008015/}
}
TY - JOUR AU - Godet, Fanny TI - Linear prediction of long-range dependent time series JO - ESAIM: Probability and Statistics PY - 2009 SP - 115 EP - 134 VL - 13 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008015/ DO - 10.1051/ps:2008015 LA - en ID - PS_2009__13__115_0 ER -
Godet, Fanny. Linear prediction of long-range dependent time series. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 115-134. doi: 10.1051/ps:2008015
Cité par Sources :