Hölderian invariance principle for hilbertian linear processes
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 261-275

Voir la notice de l'article provenant de la source Numdam

Let (ξ n ) n1 be the polygonal partial sums processes built on the linear processes X n = i0 a i (ϵ n-i ), n1, where (ϵ i ) i are i.i.d., centered random elements in some separable Hilbert space and the a i ’s are bounded linear operators , with i0 a i <. We investigate functional central limit theorem for ξ n in the Hölder spaces H ρ o () of functions x:[0,1] such that x(t+h)-x(t)=o(ρ(h)) uniformly in t, where ρ(h)=h α L(1/h), 0h1 with 0<α1/2 and L slowly varying at infinity. We obtain the H ρ o () weak convergence of ξ n to some valued brownian motion under the optimal assumption that for any c>0, tP(ϵ 0 >ct 1/2 ρ(1/t))=o(1) when t tends to infinity, subject to some mild restriction on L in the boundary case α=1/2. Our result holds in particular with the weight functions ρ(h)=h 1/2 ln β (1/h), β>1/2.

Soit (ξ n ) n1 le processus polygonal de sommes partielles bâti sur le processus linéaire X n = i0 a i (ϵ n-i ), n1, les (ϵ i ) i étant des éléments aléatoires i.i.d., centrés d’un espace de Hilbert séparable et les a i ’s des opérateurs linéaires bornés , vérifiant i0 a i <. Nous étudions le théorème limite central fonctionnel pour ξ n dans les espaces de Hölder H ρ o () de fonctions x:[0,1] vérifiant x(t+h)-x(t)=o(ρ(h)) uniformément en t, où ρ(h)=h α L(1/h), 0h1 avec 0<α1/2 et L à variation lente. Nous prouvons la convergence en loi dans H ρ o () de ξ n vers un mouvement brownien à valeurs dans , sous la condition optimale que pour tout c>0, tP(ϵ 0 >ct 1/2 ρ(1/t))=o(1) quand t tend vers l’infini, au prix dans le cas limite α=1/2 d’une légère restriction sur L. Notre résultat s’applique en particulier au cas ρ(h)=h 1/2 ln β (1/h), β>1/2.

DOI : 10.1051/ps:2008011
Classification : 60F17, 60B12
Keywords: central limit theorem in Banach spaces, Hölder space, functional central limit theorem, linear process, partial sums process
@article{PS_2009__13__261_0,
     author = {Ra\v{c}kauskas, Alfredas and Suquet, Charles},
     title = {H\"olderian invariance principle for hilbertian linear processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {261--275},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2008011},
     mrnumber = {2528083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008011/}
}
TY  - JOUR
AU  - Račkauskas, Alfredas
AU  - Suquet, Charles
TI  - Hölderian invariance principle for hilbertian linear processes
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 261
EP  - 275
VL  - 13
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008011/
DO  - 10.1051/ps:2008011
LA  - en
ID  - PS_2009__13__261_0
ER  - 
%0 Journal Article
%A Račkauskas, Alfredas
%A Suquet, Charles
%T Hölderian invariance principle for hilbertian linear processes
%J ESAIM: Probability and Statistics
%D 2009
%P 261-275
%V 13
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2008011/
%R 10.1051/ps:2008011
%G en
%F PS_2009__13__261_0
Račkauskas, Alfredas; Suquet, Charles. Hölderian invariance principle for hilbertian linear processes. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 261-275. doi: 10.1051/ps:2008011

Cité par Sources :