Asymptotic unbiased density estimators
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 1-14
Cet article a éte moissonné depuis la source Numdam
This paper introduces a computationally tractable density estimator that has the same asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples as low as , where we see an improvement of as much as 20% over the traditionnal estimator.
DOI :
10.1051/ps:2007055
Classification :
62G07, 62G20
Keywords: nonparametric density estimation, kernel smoother, asymptotic normality, bias reduction, confidence intervals
Keywords: nonparametric density estimation, kernel smoother, asymptotic normality, bias reduction, confidence intervals
@article{PS_2009__13__1_0,
author = {Hengartner, Nicolas W. and Matzner-L{\o}ber, \'Eric},
title = {Asymptotic unbiased density estimators},
journal = {ESAIM: Probability and Statistics},
pages = {1--14},
year = {2009},
publisher = {EDP-Sciences},
volume = {13},
doi = {10.1051/ps:2007055},
mrnumber = {2493852},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007055/}
}
TY - JOUR AU - Hengartner, Nicolas W. AU - Matzner-Løber, Éric TI - Asymptotic unbiased density estimators JO - ESAIM: Probability and Statistics PY - 2009 SP - 1 EP - 14 VL - 13 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007055/ DO - 10.1051/ps:2007055 LA - en ID - PS_2009__13__1_0 ER -
Hengartner, Nicolas W.; Matzner-Løber, Éric. Asymptotic unbiased density estimators. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 1-14. doi: 10.1051/ps:2007055
Cité par Sources :
