On EM algorithms and their proximal generalizations
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 308-326 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

In this paper, we analyze the celebrated EM algorithm from the point of view of proximal point algorithms. More precisely, we study a new type of generalization of the EM procedure introduced in [Chretien and Hero (1998)] and called Kullback-proximal algorithms. The proximal framework allows us to prove new results concerning the cluster points. An essential contribution is a detailed analysis of the case where some cluster points lie on the boundary of the parameter space.

DOI : 10.1051/ps:2007041
Classification : 65C20, 65C60
Keywords: maximum likelihood estimation (MLE), EM algorithm, proximal point algorithm, Karush-Kuhn-Tucker condition, mixture densities, competing risks models
@article{PS_2008__12__308_0,
     author = {Chr\'etien, St\'ephane and Hero, Alfred O.},
     title = {On {EM} algorithms and their proximal generalizations},
     journal = {ESAIM: Probability and Statistics},
     pages = {308--326},
     year = {2008},
     publisher = {EDP-Sciences},
     volume = {12},
     doi = {10.1051/ps:2007041},
     mrnumber = {2404033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/}
}
TY  - JOUR
AU  - Chrétien, Stéphane
AU  - Hero, Alfred O.
TI  - On EM algorithms and their proximal generalizations
JO  - ESAIM: Probability and Statistics
PY  - 2008
SP  - 308
EP  - 326
VL  - 12
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/
DO  - 10.1051/ps:2007041
LA  - en
ID  - PS_2008__12__308_0
ER  - 
%0 Journal Article
%A Chrétien, Stéphane
%A Hero, Alfred O.
%T On EM algorithms and their proximal generalizations
%J ESAIM: Probability and Statistics
%D 2008
%P 308-326
%V 12
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/
%R 10.1051/ps:2007041
%G en
%F PS_2008__12__308_0
Chrétien, Stéphane; Hero, Alfred O. On EM algorithms and their proximal generalizations. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 308-326. doi: 10.1051/ps:2007041

Cité par Sources :