On EM algorithms and their proximal generalizations
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 308-326.

Voir la notice de l'article provenant de la source Numdam

In this paper, we analyze the celebrated EM algorithm from the point of view of proximal point algorithms. More precisely, we study a new type of generalization of the EM procedure introduced in [Chretien and Hero (1998)] and called Kullback-proximal algorithms. The proximal framework allows us to prove new results concerning the cluster points. An essential contribution is a detailed analysis of the case where some cluster points lie on the boundary of the parameter space.

DOI : 10.1051/ps:2007041
Classification : 65C20, 65C60
Keywords: maximum likelihood estimation (MLE), EM algorithm, proximal point algorithm, Karush-Kuhn-Tucker condition, mixture densities, competing risks models
@article{PS_2008__12__308_0,
     author = {Chr\'etien, St\'ephane and Hero, Alfred O.},
     title = {On {EM} algorithms and their proximal generalizations},
     journal = {ESAIM: Probability and Statistics},
     pages = {308--326},
     publisher = {EDP-Sciences},
     volume = {12},
     year = {2008},
     doi = {10.1051/ps:2007041},
     mrnumber = {2404033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/}
}
TY  - JOUR
AU  - Chrétien, Stéphane
AU  - Hero, Alfred O.
TI  - On EM algorithms and their proximal generalizations
JO  - ESAIM: Probability and Statistics
PY  - 2008
SP  - 308
EP  - 326
VL  - 12
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/
DO  - 10.1051/ps:2007041
LA  - en
ID  - PS_2008__12__308_0
ER  - 
%0 Journal Article
%A Chrétien, Stéphane
%A Hero, Alfred O.
%T On EM algorithms and their proximal generalizations
%J ESAIM: Probability and Statistics
%D 2008
%P 308-326
%V 12
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/
%R 10.1051/ps:2007041
%G en
%F PS_2008__12__308_0
Chrétien, Stéphane; Hero, Alfred O. On EM algorithms and their proximal generalizations. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 308-326. doi : 10.1051/ps:2007041. http://geodesic.mathdoc.fr/articles/10.1051/ps:2007041/

[1] H. Ahn, H. Moon and R.L. Kodell, Attribution of tumour lethality and estimation of the time to onset of occult tumours in the absence of cause-of-death information. J. Roy. Statist. Soc. Ser. C 49 (2000) 157-169. | Zbl | MR

[2] M.J. Box, A new method of constrained optimization and a comparison with other methods. Comp. J. 8 (1965) 42-52. | Zbl | MR

[3] G. Celeux, S. Chretien, F. Forbes and A. Mkhadri, A component-wise EM algorithm for mixtures. J. Comput. Graph. Statist. 10 (2001), 697-712 and INRIA RR-3746, Aug. 1999. | MR

[4] S. Chretien and A.O. Hero, Acceleration of the EM algorithm via proximal point iterations, in Proceedings of the International Symposium on Information Theory, MIT, Cambridge (1998) 444.

[5] S. Chrétien and A. Hero, Kullback proximal algorithms for maximum-likelihood estimation. IEEE Trans. Inform. Theory 46 (2000) 1800-1810. | Zbl | MR

[6] I. Csiszár, Information-type measures of divergence of probability distributions and indirect observations. Studia Sci. Math. Hung. 2 (1967) 299-318. | Zbl | MR

[7] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc., Ser. B 39 (1977) 1-38. | Zbl | MR

[8] I.A. Ibragimov and R.Z. Has'Minskii, Statistical estimation: Asymptotic theory. Springer-Verlag, New York (1981). | Zbl | MR

[9] Journal of Statistical Planning and Inference No. 107 (2002) 1-2.

[10] A.T. Kalai and S. Vempala, Simulated annealing for convex optimization. Math. Oper. Res. 31 (2006) 253-266. | MR

[11] B. Martinet, Régularisation d'inéquation variationnelles par approximations successives. Revue Francaise d'Informatique et de Recherche Operationnelle 3 (1970) 154-179. | Zbl | MR | mathdoc-id

[12] G.J. Mclachlan and T. Krishnan, The EM algorithm and extensions, Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley and Sons, Inc., New York (1997). | Zbl | MR

[13] H. Moon, H. Ahn, R. Kodell and B. Pearce, A comparison of a mixture likelihood method and the EM algorithm for an estimation problme in animal carcinogenicity studies. Comput. Statist. Data Anal. 31 (1999) 227-238. | Zbl

[14] A.M. Ostrowski, Solution of equations and systems of equations. Pure and Applied Mathematics, Vol. IX. Academic Press, New York-London (1966). | Zbl | MR

[15] R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 877-898. | Zbl | MR

[16] M. Teboulle, Entropic proximal mappings with application to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. | Zbl | MR

[17] P. Tseng, An analysis of the EM algorithm and entropy-like proximal point methods. Math. Oper. Res. 29 (2004) 27-44. | Zbl | MR

[18] C.F.J. Wu, On the convergence properties of the EM algorithm. Ann. Stat. 11 (1983) 95-103. | Zbl | MR

[19] Z.B. Zabinsky, Stochastic adaptive search for global optimization. Nonconvex Optimization and its Applications 72. Kluwer Academic Publishers, Boston, MA (2003). | Zbl | MR

[20] W.I. Zangwill and B. Mond, Nonlinear programming: a unified approach. Prentice-Hall International Series in Management. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1969). | Zbl | MR

Cité par Sources :