Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x| α , α[1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.

DOI : 10.1051/ps:2007030
Classification : 65C30, 60H35, 65C20
Keywords: discretization scheme, strong convergence, CIR process
@article{PS_2008__12__1_0,
     author = {Berkaoui, Abdel and Bossy, Mireille and Diop, Awa},
     title = {Euler scheme for {SDEs} with {non-Lipschitz} diffusion coefficient : strong convergence},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--11},
     year = {2008},
     publisher = {EDP-Sciences},
     volume = {12},
     doi = {10.1051/ps:2007030},
     mrnumber = {2367990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007030/}
}
TY  - JOUR
AU  - Berkaoui, Abdel
AU  - Bossy, Mireille
AU  - Diop, Awa
TI  - Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
JO  - ESAIM: Probability and Statistics
PY  - 2008
SP  - 1
EP  - 11
VL  - 12
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007030/
DO  - 10.1051/ps:2007030
LA  - en
ID  - PS_2008__12__1_0
ER  - 
%0 Journal Article
%A Berkaoui, Abdel
%A Bossy, Mireille
%A Diop, Awa
%T Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
%J ESAIM: Probability and Statistics
%D 2008
%P 1-11
%V 12
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007030/
%R 10.1051/ps:2007030
%G en
%F PS_2008__12__1_0
Berkaoui, Abdel; Bossy, Mireille; Diop, Awa. Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11. doi: 10.1051/ps:2007030

Cité par Sources :