Toward the best constant factor for the Rademacher-gaussian tail comparison
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 412-426
Voir la notice de l'article provenant de la source Numdam
It is proved that the best constant factor in the Rademacher-gaussian tail comparison is between two explicitly defined absolute constants and such that 1.01 . A discussion of relative merits of this result versus limit theorems is given.
DOI :
10.1051/ps:2007027
Classification :
60E15, 62G10, 62G15, 60G50, 62G35
Keywords: probability inequalities, Rademacher random variables, sums of independent random variables, Student's test, self-normalized sums
Keywords: probability inequalities, Rademacher random variables, sums of independent random variables, Student's test, self-normalized sums
@article{PS_2007__11__412_0,
author = {Pinelis, Iosif},
title = {Toward the best constant factor for the {Rademacher-gaussian} tail comparison},
journal = {ESAIM: Probability and Statistics},
pages = {412--426},
publisher = {EDP-Sciences},
volume = {11},
year = {2007},
doi = {10.1051/ps:2007027},
mrnumber = {2339301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/}
}
TY - JOUR AU - Pinelis, Iosif TI - Toward the best constant factor for the Rademacher-gaussian tail comparison JO - ESAIM: Probability and Statistics PY - 2007 SP - 412 EP - 426 VL - 11 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/ DO - 10.1051/ps:2007027 LA - en ID - PS_2007__11__412_0 ER -
%0 Journal Article %A Pinelis, Iosif %T Toward the best constant factor for the Rademacher-gaussian tail comparison %J ESAIM: Probability and Statistics %D 2007 %P 412-426 %V 11 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/ %R 10.1051/ps:2007027 %G en %F PS_2007__11__412_0
Pinelis, Iosif. Toward the best constant factor for the Rademacher-gaussian tail comparison. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 412-426. doi: 10.1051/ps:2007027
Cité par Sources :
