Toward the best constant factor for the Rademacher-gaussian tail comparison
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 412-426

Voir la notice de l'article provenant de la source Numdam

It is proved that the best constant factor in the Rademacher-gaussian tail comparison is between two explicitly defined absolute constants c 1 and c 2 such that c 2 1.01 c 1 . A discussion of relative merits of this result versus limit theorems is given.

DOI : 10.1051/ps:2007027
Classification : 60E15, 62G10, 62G15, 60G50, 62G35
Keywords: probability inequalities, Rademacher random variables, sums of independent random variables, Student's test, self-normalized sums
@article{PS_2007__11__412_0,
     author = {Pinelis, Iosif},
     title = {Toward the best constant factor for the {Rademacher-gaussian} tail comparison},
     journal = {ESAIM: Probability and Statistics},
     pages = {412--426},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007027},
     mrnumber = {2339301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/}
}
TY  - JOUR
AU  - Pinelis, Iosif
TI  - Toward the best constant factor for the Rademacher-gaussian tail comparison
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 412
EP  - 426
VL  - 11
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/
DO  - 10.1051/ps:2007027
LA  - en
ID  - PS_2007__11__412_0
ER  - 
%0 Journal Article
%A Pinelis, Iosif
%T Toward the best constant factor for the Rademacher-gaussian tail comparison
%J ESAIM: Probability and Statistics
%D 2007
%P 412-426
%V 11
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007027/
%R 10.1051/ps:2007027
%G en
%F PS_2007__11__412_0
Pinelis, Iosif. Toward the best constant factor for the Rademacher-gaussian tail comparison. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 412-426. doi: 10.1051/ps:2007027

Cité par Sources :