A Donsker theorem to simulate one-dimensional processes with measurable coefficients
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 301-326

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove a Donsker theorem for one-dimensional processes generated by an operator with measurable coefficients. We construct a random walk on any grid on the state space, using the transition probabilities of the approximated process, and the conditional average times it spends on each cell of the grid. Indeed we can compute these quantities by solving some suitable elliptic PDE problems.

DOI : 10.1051/ps:2007021
Classification : 60J60, 65C
Keywords: Monte Carlo methods, Donsker theorem, one-dimensional process, scale function, divergence form operators, Feynman-Kac formula, elliptic PDE problem
@article{PS_2007__11__301_0,
     author = {\'Etor\'e, Pierre and Lejay, Antoine},
     title = {A {Donsker} theorem to simulate one-dimensional processes with measurable coefficients},
     journal = {ESAIM: Probability and Statistics},
     pages = {301--326},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007021},
     mrnumber = {2339295},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007021/}
}
TY  - JOUR
AU  - Étoré, Pierre
AU  - Lejay, Antoine
TI  - A Donsker theorem to simulate one-dimensional processes with measurable coefficients
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 301
EP  - 326
VL  - 11
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007021/
DO  - 10.1051/ps:2007021
LA  - en
ID  - PS_2007__11__301_0
ER  - 
%0 Journal Article
%A Étoré, Pierre
%A Lejay, Antoine
%T A Donsker theorem to simulate one-dimensional processes with measurable coefficients
%J ESAIM: Probability and Statistics
%D 2007
%P 301-326
%V 11
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007021/
%R 10.1051/ps:2007021
%G en
%F PS_2007__11__301_0
Étoré, Pierre; Lejay, Antoine. A Donsker theorem to simulate one-dimensional processes with measurable coefficients. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 301-326. doi: 10.1051/ps:2007021

Cité par Sources :