Preservation of log-concavity on summation
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215

Voir la notice de l'article provenant de la source Numdam

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of independent (not necessarily log-concave) random variables.

DOI : 10.1051/ps:2006008
Classification : 60E15, 60C05, 11B75
Keywords: log-concavity, convolution, dependent random variables, Stirling numbers, eulerian numbers
@article{PS_2006__10__206_0,
     author = {Johnson, Oliver and Goldschmidt, Christina},
     title = {Preservation of log-concavity on summation},
     journal = {ESAIM: Probability and Statistics},
     pages = {206--215},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006008},
     mrnumber = {2219340},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2006008/}
}
TY  - JOUR
AU  - Johnson, Oliver
AU  - Goldschmidt, Christina
TI  - Preservation of log-concavity on summation
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 206
EP  - 215
VL  - 10
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2006008/
DO  - 10.1051/ps:2006008
LA  - en
ID  - PS_2006__10__206_0
ER  - 
%0 Journal Article
%A Johnson, Oliver
%A Goldschmidt, Christina
%T Preservation of log-concavity on summation
%J ESAIM: Probability and Statistics
%D 2006
%P 206-215
%V 10
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2006008/
%R 10.1051/ps:2006008
%G en
%F PS_2006__10__206_0
Johnson, Oliver; Goldschmidt, Christina. Preservation of log-concavity on summation. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215. doi: 10.1051/ps:2006008

Cité par Sources :