Conditional principles for random weighted measures
ESAIM: Probability and Statistics, Tome 9 (2005), pp. 283-306
Cet article a éte moissonné depuis la source Numdam
In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
DOI :
10.1051/ps:2005016
Classification :
60E15, 60F10
Keywords: large deviations, transportation cost inequalities, conditional laws of large numbers, minimum entropy methods
Keywords: large deviations, transportation cost inequalities, conditional laws of large numbers, minimum entropy methods
@article{PS_2005__9__283_0,
author = {Gozlan, Nathael},
title = {Conditional principles for random weighted measures},
journal = {ESAIM: Probability and Statistics},
pages = {283--306},
year = {2005},
publisher = {EDP-Sciences},
volume = {9},
doi = {10.1051/ps:2005016},
mrnumber = {2174872},
zbl = {1136.60332},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2005016/}
}
TY - JOUR AU - Gozlan, Nathael TI - Conditional principles for random weighted measures JO - ESAIM: Probability and Statistics PY - 2005 SP - 283 EP - 306 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2005016/ DO - 10.1051/ps:2005016 LA - en ID - PS_2005__9__283_0 ER -
Gozlan, Nathael. Conditional principles for random weighted measures. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 283-306. doi: 10.1051/ps:2005016
Cité par Sources :