Conditional principles for random weighted measures
ESAIM: Probability and Statistics, Tome 9 (2005), pp. 283-306

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form L n =1 n i=1 n Z i δ x i n , (Z i ) i being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.

DOI : 10.1051/ps:2005016
Classification : 60E15, 60F10
Keywords: large deviations, transportation cost inequalities, conditional laws of large numbers, minimum entropy methods
@article{PS_2005__9__283_0,
     author = {Gozlan, Nathael},
     title = {Conditional principles for random weighted measures},
     journal = {ESAIM: Probability and Statistics},
     pages = {283--306},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2005},
     doi = {10.1051/ps:2005016},
     mrnumber = {2174872},
     zbl = {1136.60332},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2005016/}
}
TY  - JOUR
AU  - Gozlan, Nathael
TI  - Conditional principles for random weighted measures
JO  - ESAIM: Probability and Statistics
PY  - 2005
SP  - 283
EP  - 306
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2005016/
DO  - 10.1051/ps:2005016
LA  - en
ID  - PS_2005__9__283_0
ER  - 
%0 Journal Article
%A Gozlan, Nathael
%T Conditional principles for random weighted measures
%J ESAIM: Probability and Statistics
%D 2005
%P 283-306
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2005016/
%R 10.1051/ps:2005016
%G en
%F PS_2005__9__283_0
Gozlan, Nathael. Conditional principles for random weighted measures. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 283-306. doi: 10.1051/ps:2005016

Cité par Sources :