Voir la notice de l'article provenant de la source Numdam
The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical Bernoulli percolation. We also prove a flat edge result in the case of dimension 2. Various examples are also given.
@article{PS_2004__8__169_0, author = {Garet, Olivier and Marchand, R\'egine}, title = {Asymptotic shape for the chemical distance and first-passage percolation on the infinite {Bernoulli} cluster}, journal = {ESAIM: Probability and Statistics}, pages = {169--199}, publisher = {EDP-Sciences}, volume = {8}, year = {2004}, doi = {10.1051/ps:2004009}, mrnumber = {2085613}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2004009/} }
TY - JOUR AU - Garet, Olivier AU - Marchand, Régine TI - Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster JO - ESAIM: Probability and Statistics PY - 2004 SP - 169 EP - 199 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2004009/ DO - 10.1051/ps:2004009 LA - en ID - PS_2004__8__169_0 ER -
%0 Journal Article %A Garet, Olivier %A Marchand, Régine %T Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster %J ESAIM: Probability and Statistics %D 2004 %P 169-199 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2004009/ %R 10.1051/ps:2004009 %G en %F PS_2004__8__169_0
Garet, Olivier; Marchand, Régine. Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM: Probability and Statistics, Tome 8 (2004), pp. 169-199. doi: 10.1051/ps:2004009
Cité par Sources :