Voir la notice de l'article provenant de la source Numdam
We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space on a regular domain of The result is: if then the Kolmogorov metric entropy satisfies . This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound, we provide a new universal coding based on a thresholding-quantizing procedure using replication.
@article{PS_2003__7__239_0, author = {Kerkyacharian, G\'erard and Picard, Dominique}, title = {Replicant compression coding in {Besov} spaces}, journal = {ESAIM: Probability and Statistics}, pages = {239--250}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003011}, mrnumber = {1987788}, zbl = {1031.41014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2003011/} }
TY - JOUR AU - Kerkyacharian, Gérard AU - Picard, Dominique TI - Replicant compression coding in Besov spaces JO - ESAIM: Probability and Statistics PY - 2003 SP - 239 EP - 250 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2003011/ DO - 10.1051/ps:2003011 LA - en ID - PS_2003__7__239_0 ER -
Kerkyacharian, Gérard; Picard, Dominique. Replicant compression coding in Besov spaces. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 239-250. doi: 10.1051/ps:2003011
Cité par Sources :