About the linear-quadratic regulator problem under a fractional brownian perturbation
ESAIM: Probability and Statistics, Tome 7 (2003), pp. 161-170

Voir la notice de l'article provenant de la source Numdam

In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

DOI : 10.1051/ps:2003007
Classification : 93E20, 60G15, 60G44
Keywords: fractional brownian motion, linear system, optimal control, quadratic payoff
@article{PS_2003__7__161_0,
     author = {Kleptsyna, M. L. and Breton, Alain Le and Viot, M.},
     title = {About the linear-quadratic regulator problem under a fractional brownian perturbation},
     journal = {ESAIM: Probability and Statistics},
     pages = {161--170},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2003},
     doi = {10.1051/ps:2003007},
     mrnumber = {1956077},
     zbl = {1030.93059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2003007/}
}
TY  - JOUR
AU  - Kleptsyna, M. L.
AU  - Breton, Alain Le
AU  - Viot, M.
TI  - About the linear-quadratic regulator problem under a fractional brownian perturbation
JO  - ESAIM: Probability and Statistics
PY  - 2003
SP  - 161
EP  - 170
VL  - 7
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2003007/
DO  - 10.1051/ps:2003007
LA  - en
ID  - PS_2003__7__161_0
ER  - 
%0 Journal Article
%A Kleptsyna, M. L.
%A Breton, Alain Le
%A Viot, M.
%T About the linear-quadratic regulator problem under a fractional brownian perturbation
%J ESAIM: Probability and Statistics
%D 2003
%P 161-170
%V 7
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2003007/
%R 10.1051/ps:2003007
%G en
%F PS_2003__7__161_0
Kleptsyna, M. L.; Breton, Alain Le; Viot, M. About the linear-quadratic regulator problem under a fractional brownian perturbation. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 161-170. doi: 10.1051/ps:2003007

Cité par Sources :