Voir la notice de l'article provenant de la source Numdam
We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black-Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
@article{PS_2002__6__1_0, author = {Bally, Vlad and Saussereau, Bruno}, title = {Approximation of the {Snell} envelope and american options prices in dimension one}, journal = {ESAIM: Probability and Statistics}, pages = {1--19}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002001}, mrnumber = {1888135}, zbl = {0998.60037}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2002001/} }
TY - JOUR AU - Bally, Vlad AU - Saussereau, Bruno TI - Approximation of the Snell envelope and american options prices in dimension one JO - ESAIM: Probability and Statistics PY - 2002 SP - 1 EP - 19 VL - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2002001/ DO - 10.1051/ps:2002001 LA - en ID - PS_2002__6__1_0 ER -
%0 Journal Article %A Bally, Vlad %A Saussereau, Bruno %T Approximation of the Snell envelope and american options prices in dimension one %J ESAIM: Probability and Statistics %D 2002 %P 1-19 %V 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2002001/ %R 10.1051/ps:2002001 %G en %F PS_2002__6__1_0
Bally, Vlad; Saussereau, Bruno. Approximation of the Snell envelope and american options prices in dimension one. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 1-19. doi: 10.1051/ps:2002001
Cité par Sources :