Voir la notice de l'article provenant de la source Numdam
In the present article, we investigate nonparametric estimation of the unknown drift function in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample.
Instead of observing the jump diffusion process itself, we observe a discrete and high-frequent sample of the integrated process
Based on the available observations of , we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function . Under appropriate assumptions, we will bound the -risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.
Funke, Benedikt 1 ; Schmisser, Émeline 1
@article{PS_2018__22__236_0, author = {Funke, Benedikt and Schmisser, \'Emeline}, title = {Adaptive nonparametric drift estimation of an integrated jump diffusion process}, journal = {ESAIM: Probability and Statistics}, pages = {236--260}, publisher = {EDP-Sciences}, volume = {22}, year = {2018}, doi = {10.1051/ps/2018005}, mrnumber = {3903643}, zbl = {1409.62161}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/} }
TY - JOUR AU - Funke, Benedikt AU - Schmisser, Émeline TI - Adaptive nonparametric drift estimation of an integrated jump diffusion process JO - ESAIM: Probability and Statistics PY - 2018 SP - 236 EP - 260 VL - 22 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/ DO - 10.1051/ps/2018005 LA - en ID - PS_2018__22__236_0 ER -
%0 Journal Article %A Funke, Benedikt %A Schmisser, Émeline %T Adaptive nonparametric drift estimation of an integrated jump diffusion process %J ESAIM: Probability and Statistics %D 2018 %P 236-260 %V 22 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/ %R 10.1051/ps/2018005 %G en %F PS_2018__22__236_0
Funke, Benedikt; Schmisser, Émeline. Adaptive nonparametric drift estimation of an integrated jump diffusion process. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 236-260. doi: 10.1051/ps/2018005
Cité par Sources :