Voir la notice de l'article provenant de la source Numdam
In the present article, we investigate nonparametric estimation of the unknown drift function in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample.
Instead of observing the jump diffusion process itself, we observe a discrete and high-frequent sample of the integrated process
Based on the available observations of , we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function . Under appropriate assumptions, we will bound the -risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.
Funke, Benedikt 1 ; Schmisser, Émeline 1
@article{PS_2018__22__236_0, author = {Funke, Benedikt and Schmisser, \'Emeline}, title = {Adaptive nonparametric drift estimation of an integrated jump diffusion process}, journal = {ESAIM: Probability and Statistics}, pages = {236--260}, publisher = {EDP-Sciences}, volume = {22}, year = {2018}, doi = {10.1051/ps/2018005}, mrnumber = {3903643}, zbl = {1409.62161}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/} }
TY - JOUR AU - Funke, Benedikt AU - Schmisser, Émeline TI - Adaptive nonparametric drift estimation of an integrated jump diffusion process JO - ESAIM: Probability and Statistics PY - 2018 SP - 236 EP - 260 VL - 22 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/ DO - 10.1051/ps/2018005 LA - en ID - PS_2018__22__236_0 ER -
%0 Journal Article %A Funke, Benedikt %A Schmisser, Émeline %T Adaptive nonparametric drift estimation of an integrated jump diffusion process %J ESAIM: Probability and Statistics %D 2018 %P 236-260 %V 22 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/ %R 10.1051/ps/2018005 %G en %F PS_2018__22__236_0
Funke, Benedikt; Schmisser, Émeline. Adaptive nonparametric drift estimation of an integrated jump diffusion process. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 236-260. doi : 10.1051/ps/2018005. http://geodesic.mathdoc.fr/articles/10.1051/ps/2018005/
The distribution of exchange rate volatility. J. Am. Stat. Assoc. 91 (2001) 42–55. | MR | Zbl | DOI
, , and ,Lévy Processes and Stochastic Calculus, 2nd edn. Part of Cambridge Studies in Advanced Mathematics. Cambridge, UK (2009). | MR | DOI
,Maximum likelihood estimation for integrated diffusion processes, in Contemporary Quantitative Finance: Essays in Honor of Eckhard Platen, edited by and . Springer Heidelberg, Germany (2010). | MR | Zbl | DOI
and ,On the functional estimation of jump-diffusion models. J. Econom. 116 (2003) 293–328. | MR | Zbl | DOI
and ,Fully nonparametric estimation of scalar diffusion models. Econometrica 71 (2003) 241–243. | MR | Zbl | DOI
and ,Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. | MR | Zbl | DOI
, and ,Estimating stochastic volatility diffusion using conditional moments of integrated volatility. J. Econom. 109 (2002) 33–65. | MR | Zbl | DOI
and ,The Econometrics of Financial Markets. Princeton University Press, Princeton (1997). | Zbl | DOI
, and ,Penalized nonparametric mean square error estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514–543. | MR | Zbl | DOI
, and ,Nonparametric adaptive estimation for integrated diffusions. Stoch. Process. Appl. 119 (2009) 811–834. | MR | Zbl | DOI
, and ,Constructive Approximation. Vol. 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (1993). | MR | Zbl
and ,Inference for observations of integrated diffusion processes. Scand. J. Stat. 31 (2004) 417–429. | MR | Zbl | DOI
and ,On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790–804. | MR | Zbl | DOI
,Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM: PS 4 (2000) 205–227. | MR | Zbl | mathdoc-id | DOI
,Parameter estimation for a discretely observed integrated process. Scand. J. Stat. 33 (2006) 83–104. | MR | Zbl | DOI
,LAMN property for hidden processes: the case of integrated diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 104–128. | MR | Zbl | mathdoc-id | DOI
and ,On the inverse of the first hitting time problem for bidimensional processes. J. Appl. Probab. 34 (1997) 610–622. | MR | Zbl | DOI
,Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stoch. Process. Appl. 117 (2007) 35–56. | MR | Zbl | DOI
,Ondelettes et opérateurs. I, in Actualités Mathématiques. [Current Mathematical Topics]. Hermann, Paris (1990). | MR | Zbl
,Nonparametric estimation of second-order stochastic differential equations. Econom. Theory 23 (2007) 880–898. | MR | Zbl | DOI
,Nonparametric adaptive estimation of the drift for a jump diffusion process. Stoch. Process. Appl. 124 (2014) 883–914. | MR | Zbl | DOI
,Nonparametric estimation for second-order diffusion models in high frequency data. Singap. Econ. Rev. 63 (2017) 1–31.
,Empirical likelihood inference for the second-order jump-diffusion model. Stat. Probab. Lett. 83 (2013) 184–195. | MR | Zbl | DOI
and ,Re-weighted nadaraya-watson estimation of second-order jump-diffusion model. J. Stat. Plan. Inference 143 (2013) 730–744. | MR | Zbl | DOI
, and ,Cité par Sources :