Voir la notice de l'article provenant de la source Numdam
For a given centered Gaussian process with stationary increments and , let denote the -reflected process, where . This process is important for both queueing and risk theory. In this contribution we are concerned with the asymptotics, as , of . Moreover, we investigate the approximations of first and last passage times for given large threshold . We apply our findings to the cases with being the multiplex fractional Brownian motion and the Gaussian integrated process. As a by-product we derive an extension of Piterbarg inequality for threshold-dependent random fields.
Dȩbicki, Krzysztof 1 ; Hashorva, Enkelejd 2 ; Liu, Peng 3
@article{PS_2017__21__495_0, author = {D\c{e}bicki, Krzysztof and Hashorva, Enkelejd and Liu, Peng}, title = {Extremes of \ensuremath{\gamma}-reflected {Gaussian} processes with stationary increments}, journal = {ESAIM: Probability and Statistics}, pages = {495--535}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017019}, mrnumber = {3743924}, zbl = {1393.60034}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/} }
TY - JOUR AU - Dȩbicki, Krzysztof AU - Hashorva, Enkelejd AU - Liu, Peng TI - Extremes of γ-reflected Gaussian processes with stationary increments JO - ESAIM: Probability and Statistics PY - 2017 SP - 495 EP - 535 VL - 21 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/ DO - 10.1051/ps/2017019 LA - en ID - PS_2017__21__495_0 ER -
%0 Journal Article %A Dȩbicki, Krzysztof %A Hashorva, Enkelejd %A Liu, Peng %T Extremes of γ-reflected Gaussian processes with stationary increments %J ESAIM: Probability and Statistics %D 2017 %P 495-535 %V 21 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/ %R 10.1051/ps/2017019 %G en %F PS_2017__21__495_0
Dȩbicki, Krzysztof; Hashorva, Enkelejd; Liu, Peng. Extremes of γ-reflected Gaussian processes with stationary increments. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 495-535. doi: 10.1051/ps/2017019
Cité par Sources :