Extremes of γ-reflected Gaussian processes with stationary increments
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 495-535

Voir la notice de l'article provenant de la source Numdam

For a given centered Gaussian process with stationary increments X(t),t0 and c>0, let W γ (t)=X(t)-ct-γinf 0st (X(s)-cs),t0 denote the γ-reflected process, where γ(0,1). This process is important for both queueing and risk theory. In this contribution we are concerned with the asymptotics, as u, of (sup 0tT W γ (t)>u),t(o,]. Moreover, we investigate the approximations of first and last passage times for given large threshold u. We apply our findings to the cases with X being the multiplex fractional Brownian motion and the Gaussian integrated process. As a by-product we derive an extension of Piterbarg inequality for threshold-dependent random fields.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017019
Classification : 60G15, 60G70
Keywords: γ-reflected Gaussian process, uniform double-sum method, first passage time, last passage time, fractional brownian motion, gaussian integrated process, pickands constant, piterbarg constant, piterbarg inequality

Dȩbicki, Krzysztof 1 ; Hashorva, Enkelejd 2 ; Liu, Peng 3

1 Krzysztof Dȩbicki, Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
2 Enkelejd Hashorva, Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland.
3 Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland and Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
@article{PS_2017__21__495_0,
     author = {D\c{e}bicki, Krzysztof and Hashorva, Enkelejd and Liu, Peng},
     title = {Extremes of \ensuremath{\gamma}-reflected {Gaussian} processes with stationary increments},
     journal = {ESAIM: Probability and Statistics},
     pages = {495--535},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017019},
     mrnumber = {3743924},
     zbl = {1393.60034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/}
}
TY  - JOUR
AU  - Dȩbicki, Krzysztof
AU  - Hashorva, Enkelejd
AU  - Liu, Peng
TI  - Extremes of γ-reflected Gaussian processes with stationary increments
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 495
EP  - 535
VL  - 21
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/
DO  - 10.1051/ps/2017019
LA  - en
ID  - PS_2017__21__495_0
ER  - 
%0 Journal Article
%A Dȩbicki, Krzysztof
%A Hashorva, Enkelejd
%A Liu, Peng
%T Extremes of γ-reflected Gaussian processes with stationary increments
%J ESAIM: Probability and Statistics
%D 2017
%P 495-535
%V 21
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017019/
%R 10.1051/ps/2017019
%G en
%F PS_2017__21__495_0
Dȩbicki, Krzysztof; Hashorva, Enkelejd; Liu, Peng. Extremes of γ-reflected Gaussian processes with stationary increments. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 495-535. doi: 10.1051/ps/2017019

Cité par Sources :