On the reflected random walk on R +
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 350-368

Voir la notice de l'article provenant de la source Numdam

Let ρ be a borelian probability measure on R having a moment of order 1 and a drift λ= R ydρ(y)<0. Consider the random walk on R + starting at xR + and defined for any nN by

X 0 =xX n+1 =|X n +Y n+1 |
where (Y n ) is an iid sequence of law ρ. We denote P the Markov operator associated to this random walk and, for any borelian bounded function f on R + , we call Poisson’s equation the equation f=g-Pg with unknown function g. In this paper, we prove that under a regularity condition on ρ and f, there is a solution to Poisson’s equation converging to 0 at infinity. Then, we use this result to prove the functional central limit theorem and it’s almost-sure version.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017012
Classification : 60J10
Keywords: Markov chains, Poisson’s equation, Gordin’s method, renewal theorem, random walk on the half line

Boyer, Jean−Baptiste 1

1 IMB, Université de Bordeaux / MODAL’X, Université Paris-Ouest, Nanterre, France
@article{PS_2017__21__350_0,
     author = {Boyer, Jean\ensuremath{-}Baptiste},
     title = {On the reflected random walk on $R_{+}$},
     journal = {ESAIM: Probability and Statistics},
     pages = {350--368},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017012},
     mrnumber = {3743918},
     zbl = {1393.60046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017012/}
}
TY  - JOUR
AU  - Boyer, Jean−Baptiste
TI  - On the reflected random walk on $R_{+}$
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 350
EP  - 368
VL  - 21
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017012/
DO  - 10.1051/ps/2017012
LA  - en
ID  - PS_2017__21__350_0
ER  - 
%0 Journal Article
%A Boyer, Jean−Baptiste
%T On the reflected random walk on $R_{+}$
%J ESAIM: Probability and Statistics
%D 2017
%P 350-368
%V 21
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017012/
%R 10.1051/ps/2017012
%G en
%F PS_2017__21__350_0
Boyer, Jean−Baptiste. On the reflected random walk on $R_{+}$. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 350-368. doi: 10.1051/ps/2017012

Cité par Sources :