Further refinement of self-normalized Cramér-type moderate deviations
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 201-219
Voir la notice de l'article provenant de la source Numdam
In this paper, we study the self-normalized Cramér-type moderate deviations for centered independent random variables with . The main results refine Theorems 1.1 and 1.2 of Wang [Q. Wang, J. Theoret. Probab. 24 (2011) 307–329], the Berry−Esseen bound (2.11) and Corollaries 2.2 and 2.3 of Jing, et al. [B.Y. Jing, Q.M. Shao and Q. Wang, Ann. Probab. 31 (2003) 2167–2215] under stronger moment conditions.
Reçu le :
Accepté le :
DOI : 10.1051/ps/2017010
Accepté le :
DOI : 10.1051/ps/2017010
Classification :
60F10, 62E20
Keywords: Cramér-type moderate deviations, self-normalized sums, normal approximation
Keywords: Cramér-type moderate deviations, self-normalized sums, normal approximation
Affiliations des auteurs :
Sang, Hailin 1 ; Ge, Lin 2
@article{PS_2017__21__201_0,
author = {Sang, Hailin and Ge, Lin},
title = {Further refinement of self-normalized {Cram\'er-type} moderate deviations},
journal = {ESAIM: Probability and Statistics},
pages = {201--219},
publisher = {EDP-Sciences},
volume = {21},
year = {2017},
doi = {10.1051/ps/2017010},
mrnumber = {3716127},
zbl = {1393.60032},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017010/}
}
TY - JOUR AU - Sang, Hailin AU - Ge, Lin TI - Further refinement of self-normalized Cramér-type moderate deviations JO - ESAIM: Probability and Statistics PY - 2017 SP - 201 EP - 219 VL - 21 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017010/ DO - 10.1051/ps/2017010 LA - en ID - PS_2017__21__201_0 ER -
%0 Journal Article %A Sang, Hailin %A Ge, Lin %T Further refinement of self-normalized Cramér-type moderate deviations %J ESAIM: Probability and Statistics %D 2017 %P 201-219 %V 21 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017010/ %R 10.1051/ps/2017010 %G en %F PS_2017__21__201_0
Sang, Hailin; Ge, Lin. Further refinement of self-normalized Cramér-type moderate deviations. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 201-219. doi: 10.1051/ps/2017010
Cité par Sources :