Voir la notice de l'article provenant de la source Numdam
We study backward doubly stochastic differential equations where the coefficients satisfy stochastic Lipschitz condition. We prove the existence and uniqueness of the solution in with .
Owo, Jean-Marc 1
@article{PS_2017__21__168_0, author = {Owo, Jean-Marc}, title = {$L^{p}${-Solutions} of backward doubly stochastic differential equations with stochastic {Lipschitz} condition and $p \in{} (1,2)$}, journal = {ESAIM: Probability and Statistics}, pages = {168--182}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017008}, mrnumber = {3716125}, zbl = {1393.60058}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/} }
TY - JOUR AU - Owo, Jean-Marc TI - $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$ JO - ESAIM: Probability and Statistics PY - 2017 SP - 168 EP - 182 VL - 21 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/ DO - 10.1051/ps/2017008 LA - en ID - PS_2017__21__168_0 ER -
%0 Journal Article %A Owo, Jean-Marc %T $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$ %J ESAIM: Probability and Statistics %D 2017 %P 168-182 %V 21 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/ %R 10.1051/ps/2017008 %G en %F PS_2017__21__168_0
Owo, Jean-Marc. $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 168-182. doi: 10.1051/ps/2017008
Cité par Sources :