-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 168-182
Voir la notice de l'article provenant de la source Numdam
We study backward doubly stochastic differential equations where the coefficients satisfy stochastic Lipschitz condition. We prove the existence and uniqueness of the solution in with .
Reçu le :
Accepté le :
DOI : 10.1051/ps/2017008
Accepté le :
DOI : 10.1051/ps/2017008
Classification :
60H05, 60H20
Keywords: Backward doubly stochastic differential equation, stochastic Lipschitz, Lp-Solution
Keywords: Backward doubly stochastic differential equation, stochastic Lipschitz, Lp-Solution
Affiliations des auteurs :
Owo, Jean-Marc 1
@article{PS_2017__21__168_0,
author = {Owo, Jean-Marc},
title = {$L^{p}${-Solutions} of backward doubly stochastic differential equations with stochastic {Lipschitz} condition and $p \in{} (1,2)$},
journal = {ESAIM: Probability and Statistics},
pages = {168--182},
publisher = {EDP-Sciences},
volume = {21},
year = {2017},
doi = {10.1051/ps/2017008},
mrnumber = {3716125},
zbl = {1393.60058},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/}
}
TY - JOUR
AU - Owo, Jean-Marc
TI - $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$
JO - ESAIM: Probability and Statistics
PY - 2017
SP - 168
EP - 182
VL - 21
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/
DO - 10.1051/ps/2017008
LA - en
ID - PS_2017__21__168_0
ER -
%0 Journal Article
%A Owo, Jean-Marc
%T $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$
%J ESAIM: Probability and Statistics
%D 2017
%P 168-182
%V 21
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017008/
%R 10.1051/ps/2017008
%G en
%F PS_2017__21__168_0
Owo, Jean-Marc. $L^{p}$-Solutions of backward doubly stochastic differential equations with stochastic Lipschitz condition and $p \in{} (1,2)$. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 168-182. doi: 10.1051/ps/2017008
Cité par Sources :