Voir la notice de l'article provenant de la source Numdam
We consider a Brownian motion with negative drift in the quarter plane with orthogonal reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant walks. We develop a Tutte’s invariant approach to this continuous setting, and we obtain an explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.
Franceschi, S. 1, 2 ; Raschel, Kilian 3
@article{PS_2017__21__220_0, author = {Franceschi, S. and Raschel, Kilian}, title = {Tutte{\textquoteright}s invariant approach for {Brownian} motion reflected in the quadrant}, journal = {ESAIM: Probability and Statistics}, pages = {220--234}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017006}, mrnumber = {3743912}, zbl = {1393.60088}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2017006/} }
TY - JOUR AU - Franceschi, S. AU - Raschel, Kilian TI - Tutte’s invariant approach for Brownian motion reflected in the quadrant JO - ESAIM: Probability and Statistics PY - 2017 SP - 220 EP - 234 VL - 21 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2017006/ DO - 10.1051/ps/2017006 LA - en ID - PS_2017__21__220_0 ER -
%0 Journal Article %A Franceschi, S. %A Raschel, Kilian %T Tutte’s invariant approach for Brownian motion reflected in the quadrant %J ESAIM: Probability and Statistics %D 2017 %P 220-234 %V 21 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2017006/ %R 10.1051/ps/2017006 %G en %F PS_2017__21__220_0
Franceschi, S.; Raschel, Kilian. Tutte’s invariant approach for Brownian motion reflected in the quadrant. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 220-234. doi: 10.1051/ps/2017006
Cité par Sources :