Voir la notice de l'article provenant de la source Numdam
We study both a continuous time non-binary Galton−Watson random tree and its exploration (or height) process in the subcritical, critical and supercritical cases. We then renormalize our branching process and exploration process, and take the weak limit as the size of the population tends to infinity.
Drame, Ibrahima 1, 2 ; Pardoux, Etienne 1, 2 ; Sow, A.B. 2
@article{PS_2017__21__1_0, author = {Drame, Ibrahima and Pardoux, Etienne and Sow, A.B.}, title = {Non-binary branching process and {non-Markovian} exploration process}, journal = {ESAIM: Probability and Statistics}, pages = {1--33}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2016027}, mrnumber = {3630601}, zbl = {1371.60148}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016027/} }
TY - JOUR AU - Drame, Ibrahima AU - Pardoux, Etienne AU - Sow, A.B. TI - Non-binary branching process and non-Markovian exploration process JO - ESAIM: Probability and Statistics PY - 2017 SP - 1 EP - 33 VL - 21 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016027/ DO - 10.1051/ps/2016027 LA - en ID - PS_2017__21__1_0 ER -
%0 Journal Article %A Drame, Ibrahima %A Pardoux, Etienne %A Sow, A.B. %T Non-binary branching process and non-Markovian exploration process %J ESAIM: Probability and Statistics %D 2017 %P 1-33 %V 21 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016027/ %R 10.1051/ps/2016027 %G en %F PS_2017__21__1_0
Drame, Ibrahima; Pardoux, Etienne; Sow, A.B. Non-binary branching process and non-Markovian exploration process. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 1-33. doi: 10.1051/ps/2016027
Cité par Sources :