Voir la notice de l'article provenant de la source Numdam
In this paper, we consider a Lie splitting scheme for a nonlinear partial differential equation driven by a random time-dependent dispersion coefficient. Our main result is a uniform estimate of the error of the scheme when the time step goes to 0. Moreover, we prove that the scheme satisfies an asymptotic-preserving property. As an application, we study the order of convergence of the scheme when the dispersion coefficient approximates a (multi)fractional process.
Duboscq, Romain 1 ; Marty, Renaud 2
@article{PS_2016__20__572_0, author = {Duboscq, Romain and Marty, Renaud}, title = {Analysis of a splitting scheme for a class of random nonlinear partial differential equations}, journal = {ESAIM: Probability and Statistics}, pages = {572--589}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016023}, mrnumber = {3607207}, zbl = {1358.35168}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016023/} }
TY - JOUR AU - Duboscq, Romain AU - Marty, Renaud TI - Analysis of a splitting scheme for a class of random nonlinear partial differential equations JO - ESAIM: Probability and Statistics PY - 2016 SP - 572 EP - 589 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016023/ DO - 10.1051/ps/2016023 LA - en ID - PS_2016__20__572_0 ER -
%0 Journal Article %A Duboscq, Romain %A Marty, Renaud %T Analysis of a splitting scheme for a class of random nonlinear partial differential equations %J ESAIM: Probability and Statistics %D 2016 %P 572-589 %V 20 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016023/ %R 10.1051/ps/2016023 %G en %F PS_2016__20__572_0
Duboscq, Romain; Marty, Renaud. Analysis of a splitting scheme for a class of random nonlinear partial differential equations. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 572-589. doi: 10.1051/ps/2016023
Cité par Sources :