Voir la notice de l'article provenant de la source Numdam
We consider a random sphere covering model made of random balls with interacting random radii of the product form , based on a Poisson random measure on . We provide sufficient conditions under which the corresponding random ball counting processes are well-defined, and we study the fractional behavior of the associated random fields. The main results rely on moment formulas for Poisson stochastic integrals with random integrands.
Privault, Nicolas 1
@article{PS_2016__20__417_0, author = {Privault, Nicolas}, title = {Poisson sphere counting processes with random radii}, journal = {ESAIM: Probability and Statistics}, pages = {417--431}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016021}, zbl = {1355.60065}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016021/} }
TY - JOUR AU - Privault, Nicolas TI - Poisson sphere counting processes with random radii JO - ESAIM: Probability and Statistics PY - 2016 SP - 417 EP - 431 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016021/ DO - 10.1051/ps/2016021 LA - en ID - PS_2016__20__417_0 ER -
Privault, Nicolas. Poisson sphere counting processes with random radii. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 417-431. doi: 10.1051/ps/2016021
Cité par Sources :