We consider a random sphere covering model made of random balls with interacting random radii of the product form , based on a Poisson random measure on . We provide sufficient conditions under which the corresponding random ball counting processes are well-defined, and we study the fractional behavior of the associated random fields. The main results rely on moment formulas for Poisson stochastic integrals with random integrands.
Accepté le :
DOI : 10.1051/ps/2016021
Keywords: Random balls, sphere counting, fractional processes, random fields, Poisson stochastic integrals, moment identities
Privault, Nicolas  1
@article{PS_2016__20__417_0,
author = {Privault, Nicolas},
title = {Poisson sphere counting processes with random radii },
journal = {ESAIM: Probability and Statistics},
pages = {417--431},
year = {2016},
publisher = {EDP-Sciences},
volume = {20},
doi = {10.1051/ps/2016021},
zbl = {1355.60065},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016021/}
}
TY - JOUR AU - Privault, Nicolas TI - Poisson sphere counting processes with random radii JO - ESAIM: Probability and Statistics PY - 2016 SP - 417 EP - 431 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016021/ DO - 10.1051/ps/2016021 LA - en ID - PS_2016__20__417_0 ER -
Privault, Nicolas. Poisson sphere counting processes with random radii. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 417-431. doi: 10.1051/ps/2016021
Cité par Sources :
