Voir la notice de l'article provenant de la source Numdam
Let be random processes defined as the differences of two independent stationary chi-type processes with and degrees of freedom. In this paper we derive the asymptotics of under some assumptions on the covariance structures of the underlying Gaussian processes. Further, we establish a Berman sojourn limit theorem and a Gumbel limit result.
Albin, Patrik 1 ; Hashorva, Enkelejd 2 ; Ji, Lanpeng 2, 3 ; Ling, Chengxiu 2, 4
@article{PS_2016__20__349_0, author = {Albin, Patrik and Hashorva, Enkelejd and Ji, Lanpeng and Ling, Chengxiu}, title = {Extremes and limit theorems for difference of chi-type processes}, journal = {ESAIM: Probability and Statistics}, pages = {349--366}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016018}, zbl = {1356.60042}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016018/} }
TY - JOUR AU - Albin, Patrik AU - Hashorva, Enkelejd AU - Ji, Lanpeng AU - Ling, Chengxiu TI - Extremes and limit theorems for difference of chi-type processes JO - ESAIM: Probability and Statistics PY - 2016 SP - 349 EP - 366 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016018/ DO - 10.1051/ps/2016018 LA - en ID - PS_2016__20__349_0 ER -
%0 Journal Article %A Albin, Patrik %A Hashorva, Enkelejd %A Ji, Lanpeng %A Ling, Chengxiu %T Extremes and limit theorems for difference of chi-type processes %J ESAIM: Probability and Statistics %D 2016 %P 349-366 %V 20 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016018/ %R 10.1051/ps/2016018 %G en %F PS_2016__20__349_0
Albin, Patrik; Hashorva, Enkelejd; Ji, Lanpeng; Ling, Chengxiu. Extremes and limit theorems for difference of chi-type processes. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 349-366. doi: 10.1051/ps/2016018
Cité par Sources :