Voir la notice de l'article provenant de la source Numdam
We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form . The generator may depend on the decomposition and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in and . We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou’s lemma and -lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.
Heyne, Gregor 1 ; Kupper, Michael 2 ; Mainberger, Christoph 1 ; Tangpi, Ludovic 3
@article{PS_2016__20__178_0, author = {Heyne, Gregor and Kupper, Michael and Mainberger, Christoph and Tangpi, Ludovic}, title = {Minimal supersolutions of convex {BSDEs} under constraints}, journal = {ESAIM: Probability and Statistics}, pages = {178--195}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016011}, mrnumber = {3528623}, zbl = {1356.60090}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016011/} }
TY - JOUR AU - Heyne, Gregor AU - Kupper, Michael AU - Mainberger, Christoph AU - Tangpi, Ludovic TI - Minimal supersolutions of convex BSDEs under constraints JO - ESAIM: Probability and Statistics PY - 2016 SP - 178 EP - 195 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016011/ DO - 10.1051/ps/2016011 LA - en ID - PS_2016__20__178_0 ER -
%0 Journal Article %A Heyne, Gregor %A Kupper, Michael %A Mainberger, Christoph %A Tangpi, Ludovic %T Minimal supersolutions of convex BSDEs under constraints %J ESAIM: Probability and Statistics %D 2016 %P 178-195 %V 20 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016011/ %R 10.1051/ps/2016011 %G en %F PS_2016__20__178_0
Heyne, Gregor; Kupper, Michael; Mainberger, Christoph; Tangpi, Ludovic. Minimal supersolutions of convex BSDEs under constraints. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 178-195. doi: 10.1051/ps/2016011
Cité par Sources :