Bifractional Brownian motion: existence and border cases
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 766-781

Voir la notice de l'article provenant de la source Numdam

Bifractional Brownian motion (bfBm) is a centered Gaussian process with covariance R ( H , K ) ( s , t ) = 2 - K ( | s | 2 H + | t | 2 H ) K - | t - s | 2 HK , s , t

We study the existence of bfBm for a given pair of parameters ( H , K ) and encounter some related limiting processes.

DOI : 10.1051/ps/2015015
Classification : 60G15, 42A82
Keywords: Bifractional Brownian motion, Gaussian process, fractional Brownian motion

Lifshits, Mikhail 1, 2 ; Volkova, Ksenia 1

1 St. Petersburg State University, 28 Stary, Peterhof, Bibliotechnaya pl.,2, 198504 St. Petersburg, Russia.
2 MAI, Linköping University, 58183 Linköping, Sweden.
@article{PS_2015__19__766_0,
     author = {Lifshits, Mikhail and Volkova, Ksenia},
     title = {Bifractional {Brownian} motion: existence and border cases},
     journal = {ESAIM: Probability and Statistics},
     pages = {766--781},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015015},
     zbl = {1333.60075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015015/}
}
TY  - JOUR
AU  - Lifshits, Mikhail
AU  - Volkova, Ksenia
TI  - Bifractional Brownian motion: existence and border cases
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 766
EP  - 781
VL  - 19
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015015/
DO  - 10.1051/ps/2015015
LA  - en
ID  - PS_2015__19__766_0
ER  - 
%0 Journal Article
%A Lifshits, Mikhail
%A Volkova, Ksenia
%T Bifractional Brownian motion: existence and border cases
%J ESAIM: Probability and Statistics
%D 2015
%P 766-781
%V 19
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015015/
%R 10.1051/ps/2015015
%G en
%F PS_2015__19__766_0
Lifshits, Mikhail; Volkova, Ksenia. Bifractional Brownian motion: existence and border cases. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 766-781. doi: 10.1051/ps/2015015

Cité par Sources :